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j ABSTRACT

A survey of electromagnetic and acoustical scattering by a circular cylinder

is performed. Theoretical methods and results for infinite and semi-infinite cylin-

ders, and experimental ones for finite cylinders, are included. Only tlme-harmonic

fields are considered, and dielectric cylinders are not taken into account.
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I

INTRODUCTION

1.1 Preliminary Remarks

This is the fourth in a series of reports on electromagnetic and acoustical

scattgring by selected bodies of simple shape. The previous reports dealt with the

sphere (Goodrich et al, 1961), the cone (Kleinman snd Senior, 1963) and the prolate

spheroid (Sleator, 1964). The choice of the circular cylinder was dictated by vari-

ous considerations. Firstly, the large numbor of theoretical and experimental re-

sults which have been published on this shape during the last one hundred years is in

itself sufficient to justify the writing of the present report. Secondly, the circular

cylinder has often been used for the development and testing of approximation meth-

ods of general applicability, in both the low and high frequency limits. Finally, it is

a shape of considerable interest in practical applications such as scattering by the

central part of a missile and radiation and scattering by cylindrical antennas.

In this report, the emphasis is placed on scattering rather than on radiation

problems, i.e. the source is usually located off the surface of the cylinder. Radi-

ating slots and gaps in the cylinder surface are not considered, and the interested

reader should consult the various excellent monographs on this subject, such as the

books by King (1956) and by Wait (1959). Although the case of an electric dipole on

the surface of the cylinder is examined, the problem of the equivalence of dipoles

and slots is not discussed.

Only the case of time harmonic fields is considered explicitly. This choice

is justified by the fact that an arbitrary field can always be decomposed into the sum

of monochromatic waves by Fourier analysis, and that most of the literature does in-

deed consider time harmonic fields only. However, there exist a few works on dif-

faction of pulses by circular cylinders, for example Friedlander's (1954) and Bara-

t's (1965) in which a Laplace transform method is adopted. The propagation of
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acoustic pulses from a circular cylinder has been investigated by Barakat (1961).

Useful information in also contained in a book by Friedlander (1958).

Chapters II, M and IV are devoted to exact solutions, low and high frequency

approximations for a cylinder of infinite length. Special emphasis has been given

the equivalence between acoustical and electromagnetic boundary value problems.

Wherever possible, the case of an impedance boundary condition has been consid

dered, and the results for soft, hard and perfectly conducting cylinders have been

derived as limiting cases. In Chapter V, the scattering by a semi-infinite circular

cylinder is investigated. Chapter V1 is devoted to a brief survey of measurement

techniques and experimental results. It seemed reasonable to include sunh measure

ments on (necessarily) finite cylinders, even though a theoretical chapter on finite

cylinders does not appear in this report. The principal reason for the exclusion of

such a chapter is that a satisfactory theory for a cylinder of finite length does not

yet exist; most works on this subject deai with the two limiting cases of a thin long

cylinder (a wire) and of a short fat cylindar (a disc), and a comprehensive treatment

of either one of these two cases would require a separate book. A brief outline of

the main existing works on scattering by a finite cylinder is given in section 1.3.

A considerable effort has been made to take into account all relevant contri-

butions to the subject of this report and to give due credit to bibliographical sources.

However, a complete bibliographical listing has not been attempted. The authors

are indebted to their colleagues of the Radiation Laboratory for criticism and com-

ment. This report has been typewritten by Miss C. Rader, and the figures have

been drawn by Mr. A. Antones.

1.2 Brief Historical Survey

Some of the following historical remarks are taken from a recent paper by

Logan (1965). They illustrate the principal studies on scattering by circular cylin-

ders until the beginning of World War II. The numerous contributions which have

2
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appeared in the technicul literature during the laBt twenty-live years are adequately

described in the following chapters of this report, and therefore will not be men-

tioned in this section.

The first important study on the scattering of waves by a circular cylinder is

contained in section 343 of Rayleigh's Theory of Sound (Strutt, 1945), which was

completed in the Spring of 1877. In that section, Rayleigh shewed how to separate

the wave equation in circular cylindrical coordinates, and carried out the analysis

explicitly for the case of a plane sound wave normally incident on a cylinder of gas

of given density and compressibility and with radius small compared to the wave-

length. Four years later, Rayleigh published a paper (Strutt, 1881) in which, on the

basis of Maxwell's theory of electromagnetism, he solved exactly the problem of the

scattering of electromagnetic waves by a dielectric cylinder; he reconsidered this

problem almost thirty years later (Strutt, 1918). Rayleigh's solution is valid for

normal incidence (the case of oblique incidence has been investigated only recently

by Wait (1955)), and it is known that for th)s case the acoustical and electromagnetic

problems are essentially equivalent, as Rayleigh showed in 1897. A few years

earlier, the first study of the scattering of plane waves by a perfectly conducting

infinite circular cylinder had been published by J. J. Thomson in his Recent Re-

searches in Electricity and Magnetism (1893).

In 1905 and 1906, Seitz published two papers on diffraction by a metal cylin-

der, which contain various numerical results. In those same years, Debye (1908)

succeeded in proving that the exact solution for the circular cylinder leads to results

consistent with the predictions of geometrical optics. Also, Nicholson (1912) pub-

lished an interesting work on the pressure exerted on a perfectiy conducting cylinder

by an incident electromagnetic wave, and Bromwich (1919) discussed the separabili

of Maxwell's equations in orthogonal curvilinear coordinates, of which the circular

cylindrical coordinates are a special case. Bromwich's paper is especially inter-

esting because he does not restrict himself to harmonic time dependence.

3
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It was not until the advent of the radar that a new series of studies on scatter-

ing by cylinders began. In 1941, the well-known book by Stratton appeared, and in

that same year a theoretical report by Moullin and Reynolds was distributed, in

which the case of plane waves normally incident on infinite circular cylinders was

considered, and the numerical data obtained from the exact solution were displayed

in a number of graphs.

1. 3 Scattering from Finite Cylinders

The purpose of this section is to provide the reader with some bibliographic

references on scattering and radiation by finite cylinders. Although these two prob-

lems are closely related, the latter has received much more attention in the litera-

ture owing to its Importance In antenna applications. Hallen (1938) was the P rst to

obtain an approximate solution for a thin cylindrical antenna, i.e. for values of the

cylinder radius much smaller than the wavelength. He derived an integral equation

for the unknown current distribution on the surface of the cylinder, and solved it

approximately by an iteration technique.

Since Hallen's attempt, several authors have introduced modifications in the

integral equation: Van Vleck, Bloch and Hammermesh (1947), King and Middleton

(1946), Gray (1944), Duncan and Hinchey (1960), Kapitsa, Fock and Wainshtein

(1960), among others. Van Vleck, Bloch and H1ammermesh (1947) presented two in-

dependent methods for deriving approximations to radar back scattering from thin

cylinders. In solving for the current induced on the thin cylinder, they assumed

that this current consists of four trigonometric functions, two of which correspond

to forced terms, that is, to the voltage impressed by the incident wave, whereas the

remaining two were attributed to resonant parts, i.e. to the current present on the

cylinder at the resonant frequencies. In the first of their two methods, the end-con-

dition is imposed for choosing two of the parameters in the expression for the cur-

rent, viz., the current vanishes at the ends of the cylinder. The other two para-

meters are determined by imposing the conservation of energy. In the second

4
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method, two of the parameters are found by equating the terms in Hall6n's equations

corresponding to the voltage impressed by the incident wave and the other two are

determined using the end-condition with an iterative procedure. The reader is re-

ferred to the original paper for details and for a discussion of the advantages of both

metho(o.

Storer (1951) and Tai (1951) have independently applied variational methods

for calculating the scattering cross section. Tai expressed the back scattering

cross section as a function of the unknown current on the cylindc-. This fun,-ion is

transformed with the help of Hall/n's integral equation into one which is stationrry

in the unknown current function. By substituting various trial functions for the cur-

rent into the stationary functional and then determining the free parameters by the

Rayleigh-Ritz method, the back scattering cross section is estimated. The trial

function used by Tai is a linear combination of the currents on the cylinder at the

first and second resonant frequencies, and it had been previously adopted by Van

Vleck et al (1947).

Williams (1956) has used an extension of the Wiener-Hopf technique for cal-

culating the scattering of a plane sound wave by a finite cylinder. Williams' method

is parallel to the method of Jones (1952); it involves the Laplace transformation of

the differential equation before applying the boundary conditions and the reduction of

the problem to the solution of two complex integral equations. Although these equa-

tions cannot be solved exactly, an approximate solution has been obtained under the

assumption k1 >> 1 (1 = length of the cylinder). Williams has also obtained explicit

expressions for the end-condition by taking into consideration the resonance of the

system.

Wilcox (1955) has conducted a detailed study of scattering of electromagnetic

radiation by finite cylindrical sheUs. He has used the integral equation method and

has obtained approximations to the scattering cross sections in terms of the tan-

gential electric field on the axial extension of the cylinder surface in a form which

5
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is stationary with respect to variations about the correct values. The tangential

component of the electric field due to scattering by a semi-infinite cylinder is used

as a trial function in the stationary expression. Wilcox has also derived variational

expressions for the far field in the thin cylinder approximation.

A high frequency asymptotic solution of scattering by a solid conducting finite

cylinder is given by Kleburtz (1962). However, his results are incorrect except for

the first order term, because they are based on an erroneous assumption concerning

the locations of the singularities of the Fourier transforms of the field components.

Numerical methods are available for calculating the current distribution from

integral equations. Govorun (1962) has obtained numerical results forthe symmetric

part of the surface current on a solid cylinder excited by a plane wave at broadside

incidence. The length to radius ratio varies from 6 to 65536 and the length from

4/8 to 7)/4. The paper also contains results for a cylindrical antenna with a cir-

cumferential gap of finite width. His solution converges quite rapidly for thin cylin-

ders. Williams (1956) has included a few numerical results in his previously-men-

tioned paper.

Much of the work done in the area of finite cylinders has been devoted to thin

cylinders in consideration of the practical applic. tions to antennas. King (1956) has

written a book which gives an extensive treatment of this subject

1*
Kieburtz reports in a private communication that the method for construction of an

asymptotic series expansion used in his recent paper (Kieburtz, 1965) can be applied
to the cylinder problem.

6



L

THE UNIVERSITY OF MICHIGAN
7133-3-T

II
EXACT SOLUTIONS FOR AN INFINITE CYLINDER

In this chapter, the boundary value problems of scattering of electromagnetic

energy by an infinitely long circular cylinder are formulated and solved exactly.

The relationship between vector and scalar problems is examined, and various types

of sources are considered: plane waves, cylindrical waves, dipoles, and evanescent

waves.

It is assumed that the cylinder is made of a perfectly conducting material.

In some instances, however, the more general case is considered in which an impe-

dance boundary condition may be applied at the surface of the cylinder.

The rationalized MKS system of units is employed throughout. *

2.1 Precise Formulation

This section deals with the problem of finding the electromagnetic field ex-

ternal to an infinitely long (perfectly conducting) circular cylinder embedded in a

uniform, homogeneous and isotropic medium of electric permittivity c, magnetic

permeability IA aind zero conductivity, which medium may be taken as free space.

The homogeneous Maxwell's equations

BE
VAH c - (2.1)

8H
VAE = - at --- (2.2)

govern the behavior of the electric field E and of the magnetic field H at all ordi-

nary points in space, but do not describe the fields at the source points. By taking

"' The following vector notation is used: vectors of arbitrary magnitude will be un-
derlined, e.g. E; unit vectors will be denoted by carets, e.g. $; scalar products
indicated by dots, e.g. • .E; and vector products by wedges, e.g. VAE.

7
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the divergence of both sides of equations (2.1) and (2.2), and with the convention that

at some time the fields may become solenoidal, which is certainly the case if, for

example, Et = Ht=o = 0, one finds the auxiliary equations

V.H = V.E = 0. (2.3)

Equations (2.1), (2.2) and (2.3) are satisfied by the incident or primary fields E

and H' by the total (incident plus scattered) or diffracted field E and H, and

therefore also by the secondary or scattered fields E and H', which represent the

disturbance introduced in the primary fields by the infinite cylinder.

The presence of the cylinder is accounted for by requiring that on its surface

the total electric and magnetic fields satisfy the impedance boundary condition:

E= H (2.4)

where Z is the surface impedance and P a unit vector perpendicular to the surface

of the cylinder and directed from the surface into the surrounding medium. The

case of perfect conductivity corresponds to Z = 0.

If the sources of the primary fields are specified, the surface impedance Z

is given, and a radiation condition (which is necessary to ensure uniqueness) is

assumed, then the boundary value problem is well set and may be formulated direct-

ly in terms of either the electric or the magnetic field. However, it is often advan-

tageous to reformulate the problem in terms of auxiliary functions from which the

field quantities may be derived through simple operations of differentiation.

Such auxiliary functions, or potentials, may be chosen in a variety of ways

(see, for example, Stratton, 1941). Following the procedure adopted by Kleinman

and Senior (1963), we define E and H in terms of a vector potential A through the

relations:

E = VVA AA, (2.5)

8
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H c •_. (2.6)

Maxwell's equations are satisfied by (2.5) and (2.6), provided that

2
VAVAVAA + EMVA- = 0 (2.7)

that is,

(VAVA+ C I A = vf (2.8)
at 2

where f is an arbitrary scalar function of position and time. Formula (2.8) may be

rewritten as
2_ - )A ( Vf (2.9)

Cat 2

where V2 operates on the Cartesian orthogonal components of A. Any electromag-

netic field can be derived from such a vector potential; in particular, there exists

a potential which gives the field exterior to a conducting cylinder.

Instead of obtaining the fields E and H from (2.5) and (2.6), we may use the

relations:

at- W~VAA, (2.10)

H = VAVM6, (2.11)

where A is still a solution of (2.9). It is then possible to express any electromag-

netic field in the form:

9
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JE - VAVAA_- -

-1 at
(2.12)

H- nVAVAA2+ C f VA-l,

with A 1 and A2 solutions of (2.9). Expressions (2.12) are obviously redundant, in

the sense that a great freedom of choice is left for A1 and A2. Such freedom can

be used to construct the vector potentials from scalar potentials. Let us set

A 12 (2.13)

2 2

where c is a constant vector. It was proved by Whittaker (see, for example,

Nisbet, 1955) that any electromagnetic field can be derived from (2.12) with the vec-

tor potentials restricted to the form (2.13). provided that the scalar functions 0
and U2 are two independent solutions of the wave equation

( -2CI _L. 2 0. (2.14)

The potentials A1 and A2 so determined are usually called electric and magnetic

Hertz vactors, and denoted by no and ]•m respectively.

The electric Hertz vector Je originates a field which is characterized by the

absence of a component of H in the direction of £ (transverse magnetic (TM) field),

whereas the magnetic Hertz vector tm originates a field for which E " c = 0 (trans-

verse electric (TE) field).

Except when otherwise stated, in the following we shall consider the particu-

lar case of monochromatic radiation. The propagation constant k in the medium

surrounding the cylinder is then given by

WA=2w (2.15)

10
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where w is the angular frequency and A the wavelength. In the preceding relations.

the operator a/at is replaced by the multiplicative factor -iw. The time dependence
-ikt

factor e is suppressed throughout.

If rectangular Cartesian coordinates (x, y, z) and cylindrical polar coordi-

nates (p, 0, z) connected by the relations x = p cos 0, y = p sin 0, z - z are intro-

duced (Fig. 2-1) so that _c - Tz is parallel to the axis z of the cylinder, then the
field components defined by (2.12) are, in cylindrical coordinates:

a021 y82 a022 1x 81

"E = - - a&'I - +J ,(.6
p sp +Pl* , p = 8z -P

2 o2
U lo Hb- + LX L , (2.16)

S08 P -48-z 8p

a21 
220•2E - +k k2 2=

z a82  
2za 8z 2 k

Observe that if ;,UO0 then E z NO (TE case), while if 0 2  0 then H 5 t0 (TM

Sa .

case).
The boundary conditions (2.4) at the surface p =a of the cylinder now be-

come:

E ZH, E=-ZH at p -a

or also, by (2.16):

z32 20 88
Oi % 80 2 + aZ 0

:_~~ ~ a Z V - tp -

z p 82 2
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a Ej
z-
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In order to satisfy these relations, in the case of perfect conductivity (Z = 0) it is

sufficient to require that either

91 0 and 02 =a 0

or

@2 1 0 , and •I a= 0a

whereas In the case in which Z 0 0 both TE and TM fields must, in general, be

present. However, if I and @2 are independent of z (two-dimensional problems,

8/8z s 0), then the boundary conditions can be satisfied by requiring that either

?k2E 0 , and + 1kZ q1 p

V/2w05 and ( k.{ ZtT;)i,.. 8 0.

The scalar wave functions @1 and 'P2 can be represented by linear combina-

tions of the elementary wave functions

ah (p k-2) inO±ihz (2.17)
V@n h HM'

n

where n is a real integer (n = 0, t 1, t+2, etc), and h a parameter which is, in

general, complex and whose values may cover a discrete set as well as a continuum

spectrum. If h assumes only one value, as it happens, for example, when the

rimary source consists of a plane wave, then 01 and @2 are proportional to E

d z, respectively.

13
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In the case in which all primary sources are located within a finite distance

from the origin r a 0 of the coordinate system, the fields E and H are required to

satisfy the Silver-Miiller radiation condition

r -* A(VA) +l T 0 uniformly inr (2.18)

where r a rO - xt+YAy+z , and the angle 0 of Fig. 2-1 is restricted to the

range 0< 6 4 4C r -6, with 6 arbitrarily small and conrtant. From this condition

and from Maxwell's equations it follows that the fields are of the form

ikr
L^___ as r-i .

r

If the primary source is a line source parallel to the cylinder axis, then the

problem is two-dimensional and condition (2.18) is no longer valid. In such cases

It is sufficient to require that

Up.n 1/ - ik) 1k, 0 uniformly in 0 (2.19)

2

that is, 01 and i2 are of the form

e asp .

Finally, in the case of plane wave incidence it is necessary to separate inci-

dent from scattered fields; the ecalar wave functions Os and k& which originate the

scattered fields satisfy the two-dimensional radiation condition (2.19).

Two kinds of primary fields are of practical interest, and will be examined

in detail in the following two sections of this report: plane waves, and sources

located at a finite distance from the scatterer. The first kind is important in radar

L- 14
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scattering where the target is usually assumed to be illuminated by an incident plane

wave. The second type is relevant to the case of an antenna mounted on the scat-

terer. The antenna may be taken to be a dipole, since more complicated sources

can be considered as distributions of dipoles. On the other end, a plane wave is the

limiting case of a dipole going to infinity in a direction perpendicular to its moment.

From the strictly mathematical viewpoint, it is therefore sufficient to consider the

simple case of a dipole source at a finite distance from the cylinder; the solution of

the scattering problem for any given source distribution can subsequently be ob-

tained by superposition.

In order to arrive at the definition of dipole, let us consider the scalar point

source defined by

11cR
0o" -a

where

R (( I.E-.r1  1 000)+( i ,sn0)2+(- /

is the distance between the source point (p1 01' zl) and the field or observation

point (P, 0. z).

An electromagnetic source at the point (pi, 01o 1) can be derived from 00

in may ways. For instance, we may take either 1 -" 0 and 02 = 0 or 01 - 0 and

2 = 0o 0in equations (2.16). In the first case the primary field components are

those of an electric Hertz vector = - iz whereas itt second case the

fields are originated from a magnetic Hertz vector = -2- T . In the notation of

Stratton (1941), 1; and En represent electric and magnetic dipoles of moment
p(1)= 4rez and m.() 4OT , respectively.

z 5

15
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J The components of thu fields of an electric dipole (with moment 2(1)= 4wei )

are:

E (Z -zr [pP 0o8(0- 1T -0 s.k 3 WP I p 1 I -R 4 R_5 '

i ( )P $in(k' 3 1k _j. ikRE 0(a - - - R5 (2.20)
1 1  1 R 3  R4 + 5

i k + P 1 2ppoIs(0-'1ý -1 3k(z--z• 3()z1)" ik
E - + + 4ýz" R 2 R3  R 4 R 5

H-- ap I )R 2 " R3(

=i )]- (- )(ik _l 3 ikR

H-I -O.
H 0 UX P -Pi 00001 2 83

H 1 0.

The components of the fields of a magnetic dipole (with moment _. (1) - 0 Tz)

obtained from (2.20) by replacing E with H, H with -E, and c with M.

The scattering of the electromagnetic field of an axially oriented electric di-

pole by a perfectly conducting infinite cylinder can be described by a scalar wave

function ;P which in single-valued and twice-differentiable in each of the quantities

P, 0. z, P,, 0,, z,. satisfies the wave equation

(V 2 +k k2) 0

d the boundary condition

L 16
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(R-+ 021PER -0

and originates a diffracted electromagnetic field given by equations (2.16) with

ikR
01" +IN 'L + 0,

which satisfies the radiation condition (2.18).

Similarly, the scattering of the electromagnetic field of an axially oriented

magnetic dipole by a perfectly conducting cylinder can be described by a scalar wave

function 20, single-valued and twice differentiable in p, , 0 z, l' P19 Zl, such that

/ ikR22 .k8 2i0_0 20( k) t - , 8p +¢ 2 0
'1p=a

and that the diffracted field obtained by, putting •1 = 0 and ¢J2 = e k/R+Ct' i2 2

(2.16) satisfies condition (2.18).

If the surface of the cylinder has a nonzero impedance, then two independent

scalar wave functions are needed to describe the scattered field produced by an

axially oriented dipole source.

In the general case of a dipole source arbitrarily oriented with respect to the

cylinder axis, it is still possible to derive the solution of the scattering problem

from two scalar wave functions ;1 and W2 # representing series of electric and mag

netic multipoles oriented along the axis. An alternative but entirely equivalent

approach consists in finding explicitly the Green's functions for the cylinder; such

Green's functions are customarily grouped together into a dyadic Green's function,

whose derivation for the case of a perfectly conducting cylinder is briefly outlined

in section 2.3 of this report. The use of dyadic Green's functions is noteworthy

L '17



THE UNIVERSITY OF MICHIGAN
7133-3-T

for its elegance, and has been particularly advocated by Schwinger (1943, 1950).

Morse and Feshbach (1946, 1953), Tai (1953, 1954a, b) and van Bladel (1964), among

others.

When the boundary value problem is two-dimensional, it is possible to form-
ulate simultaneously both scalar and vector scattering problems. We shall limit our

considerations to the case of a plane wave incident perpendicularly to the cylinder

axis. A scalar or vector plane wave can be considered as a limiting case of a sca-

lar point source or of a dipole removed to infinity. If we let z, = 0 and x,

then R ,%, p1 +pcoso when p1 becomes very large, and

eikR e kx
- - e as P-0ODas

R p1

so that If the source strength is renormalized by neglecting the factor e /pis a

scalar plane wave propagating in the i direction is obtained.x

In the two-dimensional case, 8/8z m 0, and equations (2.16) simplify, be-

coming

E i- 8 2 H-- •

k2 2E0 -iWu ap H H = LX -• J (2.21)

Ez k k2 01 a H z = k 202 *

By taking ;1 = e and 02 = 0 in relations (2.21), one finds that

Ei = k2eikPcoos Ei = E = Hi = 0
z P z1
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E~~~~~i ~ ~ = -VE/MEH' ý 1ACos 0E'P VEMiP 7 , H-

which are the components of an electromagnetic plane wave propagating in the direc-
1 2io ~ I . 2 ftoAtionof the positive x-axis with E k 'ke and H'=-yc/Mke i . Alter--- ikx z -

natively, by making 1 0 and 2 e in (2.21), one obtains that

E P= ýrl. syozE Vile cos 0 H

Ei = Hi i 0 H-1 k2eikpcos
z p 0 z

Awhich are the components of a plane wave propagating In the i direction with

i - 2 ekX A I 2eiocA
E-- • kke i• , and H'=k k.

If a function 0l(p, 0) which is single-valuea and twice-differentiable in both

variables p and 0, can be found such that

(V2 +k( = o (2.22)

- I) (e kX+ 0 ) 0, (2.23)
k 8p 1p=a

p -- n 1/2 ( k 0 uniformly in0, (2.24)

then:

(W) the acoustic velocity potential of the field scattered by a cylinder with
0i eikx s

• = rk/(w5) in the presence of the plane wave ~ = e is given by "; here 6 is

the density (mass per unit volume) of the medium surrounding the cyliuder and C is

the normal acoustic impedance, i.e. the ratio of pressure to the normal component

of the velocity at the surface of the cylinder (in particular, C = n = 0 in the case of

a perfectly soft cylinder);
19
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4(i) the electromagnetic field diffracted by a cylinder with relative surface

Impedance - z i the preance of theplanewave E -= -V7 H = k2 ek
Stkx aitl given by relations (2.21) with V01 - +€I o V2 - 0.

If a function 02(p, 0) can be found which satisfies all requirements imposed

on I except (2.23) which is replaced by

+ikf )(e + o0, (2.25)
(O 2p=a

then:

(I) the acoustic velocity potential of the field scattered by a cylinder with

S= W6/(Ck) in the presence of the plane wave i= eilcis given by rk2 (in particu-

lar, C = 0 in the case of a perfectly rigid cylinder);

(ii) the electromagnetic field diffracted by a cylinder with Z = Z4 in the

presence of the plane wave H = T E/y- = k2eikx is given by relations (2.21) with
ikx s

0 = 0. "2= e + 0i.

In closing this section, we point out that instead of dealing with the scatter-

ing problem from the point of view of differential equations, we could approach the

problem from the equivalent viewpoint of integral equations. In the vector case,

this approach would involve the use of dyadic Green's functions as previously men-

tioned. The introduction of dyadic Green's functions is avoided in the case in which

one wants to determine only the electromagnetic field at the surface of the scatterer

(Maue, 1949). Once the surface fields are known, the fields at any point in space

may be obtained through an integration over the surface of the scattering body

(Stratton, 1941) The use of Maue's integral equation in place of the differential

(wave) equation usually represents a complication of the problem, which may be

counterbalanced by two simplifications: (1) the number of independent variables is

reduced by one and the introduction of a special space coordinate system is unneces-

sary, and (2) the integral equation is the only requirement imposed on the unknown
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function, that is, the boundary conditions are automatically satisfied. Maus's inte-

gral equation formulation is therefore particularly useful when the scattering prob-

lem involves boundaries which are not coordinate surfaces in a system of coordi-

nates for which the wave equation is separable, but obviously loses most of its in-

terest in the simple case in which the scatterer is an infinite circular cylinder.

2.2 Plane Wave, Spherical Wave, and Line Source Incidence

In this section, the scattering of a plane electromagnetic wave by an infinite

circular cylinder of radius a with relative surface impedance r = Z •-h is con-

sidered. The formulas which give the diffracted field components as infinite serie

of eigenfunctions are derived for the case of oblique incidence, and they are subse-

quently specialized to the case in which the incident wave propagates in a direction

perpendicular to the axis of the cylinder. The transformation of the infinite series

solutions Into contour integrals in the complex plane is discussed.

Particular attention is devoted to the case of normal incidence on a perfectly

conducting cylinder. The behavior of both near fields and far fields is investigated

in detail, for the cases in which either the electric or the magnetic incident field is

parallel to the cylinder axis. Finally, the scattering of cylindrical and spherical

waves is also examined.

Let us consider the incident plane electromagnetic wave

E = (-cosacosAT +sinOi +sinacos eik(x8in)+Zcose)
x y z

(2.26

Hg = • (-cosasinAT -cosof +sinasin•t )ek(xsinc•+zcosa)
X y Z

which propagates in the direction of the unit vector
i I

A EAH A 
A

k = sinai +cosa , (0 <a< r)
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The incident electric field Ei forms the angle 0 with the (x, z) plane of Fig. 2-2.

It Is easily verified that, according to formulas (2.16). the scalar functions

EtI
I z cn aooB ikP sinaoos0+ikzcosn

1 2 2 2
k min a kasina

(2.27)
.~Hi

I z gin --n Ikp sinacon 0+ kz oosa

k mina k sina

generate the incident fields (2.26).

The scattered fields E8 and H_ may be derived from two scalar functions

and op2 through formulas (2, 16). The functions 1 and 02 are linear combina-

tions of the elementary wave functions (2.17). Since the cylinder is assumed to be

of infinite length, the dependence of the scattered fields on the coordinate z must be

the same as for the incident fields, that is, both incident and scattered fields vary

according to the factor ei co.a Hence h = kcosoa, and only the plus sign is con-

sidered in the exponential of (2.17). Furthermore, the wave functions containing

J do not satisfy the radiation condition (2.19), and must therefore be disregarded,n

so that we finally have:

;P a H(1)lPsin&) ein+ikzcosa
¢1- anH

(2.28)
OD

b H(1)1 einaJ+e l kzcoscf'2 - bnH (kposlna)
n=-oD

and therefore the scalar wave functions which generate the diffracted fields are

given by:
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z

incident wavefront Iident wave

y 2

FIG. 2-2: GEOMETRY FOR PLANE WAVE INCIDENCE.
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4, - ikz con a e 1ksina°°ooiAn +)ein

~l~n el@ 2 coup in nH~)(kp snaotIj
k Ba 1 naD

(2.29)

*ikzcosa
i+ a = eV,$4 asainge 1kpsina oo 0 +

'P2 V1202k 2 Lia

Rnn

n=oD

where we set, for convenience,

in i

An- kb n= e/U-in- B . (2.30)k2 An n c2 nm

The coefficients A and B are determined by imposing the boundary conditions at1n n
the surface of the cylinder. One finds that (Levy and Keller, 1959):

A cos Jsina-biJnfllH(1)sina -H111'" + nH(( in a

n fl (onn n nf n sasina) +
+ sing 2nwoosa

r (ka) 2snJ

(2.31)

1 [sn t(tl.nSina iJn)(l)sina - (1)' + (1) ( nCosa
Sn n n nf \kasinc/J-

-00 o 2nn cosa 1
ir(ka) 2sina_

where
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n n n n '%k iam n )

and the primes indicate the derivatives of the Bessel and Hankel functions with

respect to the argument kasin&. In deriving (2.31), the well known formula

e ilk sina co0 , i.t nJ(kp sna) emn
na-c)

has been used. In particular, in the case of a perfectly onaduoting cylinder, one

has that

J (ka sina) J' I(ka sine)
(A) n - a coOs l (B) -- A -, sing. (2.33)n)vi*O H (ka asin) nO H() (ka sina)n n

The components of the scattered fields are given by:

E5 a eikz cosa CID I e 7no U onot HlY - U ~p U _

is _kzecooa aOa incomLA_ n ( 1)+1

E -e Ykpsn H n n ni

E5 8eIkz coo na : mn AH(1) e in
z n n n

(2.34

ikz oo nA a (1)
H~ e~ 0  L e L -H +iB co H"" n .'no n+ n oJ,•a ,
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ikzoosa z ineinf (1)' nB noosa (I

H* nsn$ ~) - H

-"n nf" kp sina n

00
Hs \ T iAa Zsine Z inBnH(l)einO

Z

where the argument of the Bessel and Hankel functions and of their derivatives is

kpsin&, and An and B are given by (2.31).

It is seen that ff the cylinder is not perfectly conducting, then the z-oompo-

nent of the scattered electric (magnetic) field is different from zero, even if the

z-oomponent of the incident electric (magnetic) field it zero (see also Wait, 1955)*.

Formulas (2.34) become less complicated when the incident wave propagates

In a direction perpendicular to the axis of the cylinder (normal incidence, a - ,r/2).

In such case, the function ;P generates a TM field and the function 2 a TE field,

whose components are obtained through relations (2.21):

*In connection with this remark, it should be noted that the method given by Stockel
(1962) for deriving the diffracted electromagnetic field corresponding to oblique
incidence from the field corresponding to normal incidence is valid only for per-
fectly conducting cylinders.
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OD

E W cooUP A H((kp)ea

P -- n=-OD n

GO

H8  n-G 1)

(2.35)

a_ 1) in o
EK z -riJsinP Ei B n Hn (kP) a

p kp 1 n n

n=-G)OD

where we set:

1% J (ka) - i.J, Inlka). J ~lm) - In- 1j In ka)
_ _ _ _ _ _ _ _....

A W - (1'B~ n (- 1() . (2.36)

nna n

The scattered electromagnetic field for normal Incidence is thus given by the super-

position of a TM field proportional to cos A and a TE field proportional to sin g; we

can therefore limit our considerations to the particular cases 0 =0 LE parallel to

the cylinder axis) and 7 ./2 (•. parallel to the axis).
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From formulas (2.35), one derives the following asymptotic expressions for

the oomponents of the far scattered field:

E 5  42/-wa4ve1Cs o * l [+ o(Ilokp~

W CD4 ikp
Hu a 4 0080 nXoon [l+O(l/kp)]P _ 0 an n (ko) 3/2

TM field for kp -- o

H5 z VIA t sinK C Bacoo n} ~[1 +(l /k4ý

E h 1 v a sin n ieo ie n B noio3/2

E0 Jj7l He [-"id/p]
TE field fr kp -+ o

The Infinite series solutions which have been obtained are of practical value
as they stand only when the radius of the cylinder is not large compared to the wave-

length. The number of terms of each series required to give a good approximation

to the Infinite sum is of the order of 2ka, so that numerical results are oasily ob-

tained only when ka is not very large compared to unity. The procedure commonly

adopted in the case of large values of ka consists in replacing the infinite series
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by contour integrals, which may be evaluated asymptotically'.

As an example, lot us consider the case of a perfectly conducting cylinder

(17 - 0) with E parallel to the axis. From formulas (2.35) and (2.36) it follows that

SOD nIJn(ka)
E = - H -- (1) (kp) cos no (2.37)z ; n H(1)(k• n

H

where c 0 I and c = 2 for n > 1. Treating the summation over n as a residueO nl

series, the summation is replaced by a contour integral C in the complex v plane

(Fig. 2-3) taken in the clockwise direction through the origin and around the poles

at V = 1,2,..., giving:

JC J(ka) H~l)l(kp) cos v$ jy.

E I V -Ve 2 (.8H H(ka)e d . (2.38)

Similarly, in the case of a perfectly conducting cylinder with H parallel to the axis,

one has that

OD' 0 nJn(ka)

H8 = - , ( H( 1)(kp)cosno (2.39)
z n=0 H a(ka)

n

which becomes:

Hs= -i~ 1'tJ- e cdi. (2.40H JCJ H(l), (ka) sin •ru v.(.0

The contour integral solutions may also be introduced directly, without making use

of the infinite series solutions (see, for example, Clemmow, 1959a).
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D

C 0

Re v

0 1 2 3...

C A

M

B

FIG. 2-3: THE COMPLEX v-PLANE
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The current density J at the surface of the conducting cylinder is given by:

j = ^_HI .p= A!p=a

so that when E is parallel to the cylinder axis

A +z j i A 2 r-..cos nOm24
J = i(H+ H- z - n (1) (2.41)

p=a n=O H (ka)
n

and when H is parallel to the axis

OD

0 = ZZop=a i=O H (a (2.42)
n

In general, for a perfectly conducting cylinder and arbitrary direction of incidence:

- 2 e ikzcosa 08 E lucosno +z ika sina VE/M eos • (n1)
n=0 H (1)(ka sina)n

ODI

+ L cotga sin insin n 2.41a
n=1 H(I) (ka sina)-

n

2i eInA ikz S cosa cosnO ,4=0 n-()' .12.42a)

= nH (kasina)n

The surface current lensities J of formula (2.41) and J, of formula (2.42) may be
Z 0

rewritten in the form:*

* The signs of the right hand sides of formula (13.4) in the book by King and Wu

(1959) and of formulas (4) and (5) in the English translation of Goriainov's paper
(1958) appear to be incorrect.
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_ _21_ _ _ _ 2
2H•1)(kasn e dv (2.43)

2 co V
= _k. .IA Hl, khi e dv .(2.44)

H(1)(ka)sin vi

i iv

The path C of integration that appears in formulas (2.38), (2.39), (2.43) and

(2.44) may be deformed in various ways in the complex v plane, to give contour

integrals which either can be evaluated asymptotically In a direct manner (e.g. by

saddle point technique), or can be converted into a rapidly cohvergent residue ser-

ies. Results of these approximation techniques are given in Section IV.

For example, in the case of formula (2.38) the contour C may be deformed

as indicated in Fig. 2-3, so that

I B ID IE IF G

- + + + +

C A B D E •F

where the points A, B, D, E, F, G lie on a large semicircle of radius M with cen-

ter at the origin v = 0, and the contour EF surrounds the zeros v, (1 = 1, 2, ... ) of
(i)

H• (ka) which lie in the first quadrant, and which are first order poles of the inte-
grand function. When the radius M is increased to infinity, the contour integral

along the semicircle vanishes:

(M=a) (M=O) (M=Co)

The remaining two integrals can be manipulated to give (for details see Imai, 1954):
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11 HI)ka) e/Ul -! r
E= C ' ( 1)) H 1 k() k 2 dv +
z 2 3 B Hl (ka)

(M=ao)
F Jylka) (1) •lyo + et•2-• -2

"H H l(kp) e i dr +lT v.(.5

(M=O) D

Both integral representations (2.38) and (2.45) are as exact as the infinite series

(2.37). If a similar caloulation is performed on formula (2.40), one obtains:

(M==co)
+ 1•(k )(1,) ei-+ eiZ•12"-) -izv2

+ $ (1 )', , u (o v" "v e di.,,
('1 ka) e - e

(Mfm) (2.46)

where now the contour EF encloses the zeros v (s =i1, 2....) of H(1) (ka) which

lie in the first quadrant.

The scattered fields may be expressed as integrals over the surface S1 of

the cylinder, by using the vector analogue of Green's theorem (Stratton. 1941). If

the cylinder is perfectly conducting, one has that

-HSr) = 4 (• -1 odS1 (2.47)

where r and r1 are the radius vectors for observation point and source point re-

spectively, J is the surface current density, dS1 = adoidzI is an element of the

cylinder surface, the function off = e ikR/R with R = Ir-rEl was previously intro-

,- 33



i4

THE UNIVERSITY OF MICHIGAN
7133-3-T

duced in Section 2.1, and the gradient operates on the coordinates of the source

point.

Formula (2.47) gives the scattered magnetic field as a function of the sur-

face current density. If J is known, the determination of Ho at every point in
space depends only on the evaluation of a surface integral. In the particular case of

normal incidence, the double Integral is easily reduced to a single integral by ob-

serving that J is independent of z 1 and that

T o•dzl = iWH(ol)(k1)

with

R 1= ip2 +a2_ 2.p cos( - l11I/2 (2.48)

One then finds (Riblet, 1952):

H , = -p 5J(0i)AfiH(')kR )o, (2.49)

where RI = (a$1 - . In particular, if the incident magnetic field H is parallel

to the cylinder axis, one has that

Ij('0)=ia 1 a_ -p cos(_ - ) 1

z •) = Jka4 J 0 (01 )HlI)(kR1 ) R- 1 do1  (2.50)

with Jo given by formula (2.42), whereas for the other polarization (Ei parallel to

the z aids) it can easily be proven that

s kaEz(P ) 4 7: 5Jz(l)Hol)(kR1)d 1  (2.51)
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with J given by formula (2.41). The results (2.50) and (2.51) can also be ob-z
tained by observing that we are essentially dealing with scalar problems with Neu-

mann and Dirichlet boundary conditions, respectively, and by applying Green's

theorem with 4 H 0 (kR1)) as Green's function. Formulas which give the scattered

field as a function of the current density on the surface of the cylinder, such as

(2.50) and (2.51), are especially useful when ka is large compared to unity.

An integral equation for the current density J is obtained by adding the in-

cident magnetic field W to both sides of equation (2. 50) and by choosing the obser-z

vation point on the surface of the cylinder. Since the integrand of (2.50) has a sing-

ularity at 0 - 01 when p -- a, particular care must be taken in evaluating the limit

p --o a (Maue, 1949; Riblet, 1952). The final result is:

ika cos k 1
""(0F=- A e 2 d2 2

(2.52)

If E Is parallel to the z axis. the surface current Jz(0) satisfies the integral equa-

tion: *

S= -2 eo k oB cos +

S) (2k sin 0-0 sin -0 do1
1r i 0-01 (2.53)

If a Fourier series expansion is assumed for the surface current, the unknown co-

efficients of the expansion may be determined either by direct substitution of the

series in the integral equation for the current, or by means of a variational princi-

ple (Papas, 1950). Of course one finds again the series (2.41) and (2.42), which

were previously derived from the wave equation by separation of variables.

SFormula (28) of Riblet (1952) contains some misprints.
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In order to present a qualitative discussion of the behavior of the current on

the surface of a conducting cylinder a diagram of both amplitude and phase of the

surface current density J z- £,i' z computed by means of formula (2.41), is

shown in Fig. 2-4 for the case in which ka - 3.1 (King and Wu, 1959). The curves

are obviously symmetric with respect to the plane of incidence. The phase velocity

v of the surface current is given by the formula:

Vz/V° = -ka/(d4z/do) , (2.54)

where v 0 (c•)"1/2 is the phase velocity of the incident wave, and d~z/do is the

slope of the phase curve in Fig. 2-4. It is then seen that the phase velocity of the

current around the cylinder surface is greater than v0 in the illuminated region

about 0 - r, it decreases to a value less than v0 at the shadow boundary 0= r/2,

and maintains a nearly constant value 0.7v from 0 = 7/2 almost to 0=0. This

means that a given phase of the surface current density creeps around the cylinder

from the shadow boundary into the umbra region as a traveling wave whose velocity

is sensibly constant and less than the phase velocity of the incident wave. An iden-

tical traveling wave of current exists on the other side of the cylinder. The ampli-

tude of the surface current decreases rapidly with 0 except near 0 = 0 and 0 = 7r,

where both amplitude and phase of J are stationary. The behavior at 0 = tr isz

easily understood by observing that the element of cylinder surface is there parallel

to the incident wavefront. The behavior near 0 = 0 is a consequence of the inter-

ference of the two traveling waves' %ch propagate in opposite directions around the

cylinder and produce a standing wave. The standing wave is clearly observed only

around 0 = 0. that is in the region where the amplitudes of the two Interfering wave

are of the same order of magnitude.

Analogous considerations apply to the case in which the incident magnetic

field is parallel to the cylinder axis. However, the current is now in the 0-direction

so that the waves propagating around the cylinder may be regarded as longitudinal,

whereas in the case of _Ei parallel to the axis, the waves are transverse to the
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FIG. 2-4: CURRENT DENSITY J = i eitZ ON A CONDUCTING CYLIN-

DER, WHEN E IS PARALLEL TO THE AXIS AND ka 3.1
(King and Wu, 1959).
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FIG. 2-5: CURRENT DENSITY J ~l ý0ON A CONDUCTING CYLIN-

DER, WHEN Hý IS PARALLEL TO THE AXIS AND ka =3.1
(King and Wu, 1959).
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direcltion of Propagation. Whonever a standing wave Is produced by the Interference

of two longitudinal waves, regions of concentration of electric charges exist on the

surface of the cylinder. Such concentrations do not occur when two transversei A

waves Interfere. Phase and amplitude of the surface current density JO"- eJI

for ka-3.1 are given by the continuous lines of Fig. 2-5 (King and Wf, 1959). From

Figs. 2-4 and 2-5 it is seen that the amplitude liJl decreases more slowly than

J1 1. as 1 decreases from r to zero. This explains why the standing wave pat-

trn is much more evident In Fig. 2-5 than in Fig. 2-4.

Also represented in Fig. 2-4 is th difference 4 ,E - between the phase

of the total electric field E = lEz e I•at a point 0 on the surface of the

cylinder and the phase i = ka cos 0 of the incident field at the same point. The

broken lines of Fig. 2-5 represent amplitude and phase of the traveling waves of

surface current density, as given by Fook's high frequency approximation (see

chapter IV).

A detailed graphical representation and a discussion of the properties of the

total electric (magnetic) field in the vicinity of the cylinder when the incident elec-

tric (magnetic) field is parallel to the axis were given by King and Wu (1957, 1959).

The numerical results necessary for such discussions may be obtained easiiy

through formulas (2.37) and (2.39), when ka is not large compared to unity. The

main features of the diffraction phenomenon as well as surface current distribution

for the case of E parallel to the cylinder axis and a = 0.16 X. are illustrated in

Fig. 2-6 (Carter, 1943). The amplitude of the total electric field in the back scat-

tering direction 101 = 7 (Fig. 2-6a) resembles the amplitude 2sink(x-a)I of the

total field originated by the reflection of a plane wave incident perpendicularly on an

infinite conducting plane at x - -a. In both cases, the amplitudes exhibit standing

wave patterns whose maxima and minima are practically located at the same points

along the negative x-axis. However, in the case of the plane (ka = o), the amplitude

of the standing wave is a periodic function of x with period X/2, whereas in the

case of the cylinder, the oscillations of the amplitude pattern about the constant
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Wave

/• •-Direction

1.0- Primary Field

Total Electric Intensity (E.M.S.) t
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2.0 1.0 P0 0 PA 1.0 0.0
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2.0-
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Intensity
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2.0. P 0 P0 1.0 2.0
(b)

FIG. 2-6a, b: DIFFRACTION OF A PLANE WAVE BY A CONDUCTING
CYLINDER, WHEN El IS PARALLEL TO THE AXIS AND
a = 0.16) (Carter, 1943).
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amplitude characteristic of the incident field decrease as I xl Increases, and vanish

at x - -co. The diffracted electric field in the back scattering direction may there-

fore be considered as produced by the interference of the incident wave with a cylin-

drical wave propagating radially outward from the cylinder (scattered wave).

Since the diffracted field very near the cylinder along the negative x-axis Is

very similar to the field near a conducting plane, one may try to describe the field

in the illuminated region around 101 = mr in terms of the plane tangent to the cylinder

surface at the azimuth 0 and of the plane wave arriving at an incidence angle r -I

For a given value of 0, one still finds a standing wave pattern in the radial direc-

tion, which is more and more spread out as 101 decreases from 1800; the distance

between two adjacent maxima (or minima) is equal to X/(21cos 01). The spreading of

the pattern is evident in Figs. 2-6a and 2-6b, where the cases 10 1 = 7, 7r/2, and

zero are illustrated. The agreement between this simple interpretation and the

exact result (2.37) is good whenever cos 0 is bounded away from zero.

Thus we find that in the illuminated region I 1 --, the total electric field

may be interpreted in terms of a standing wave in the radial direction and of a trav-

eling wave which moves along the surface of the cylinder away from the negative z-

axis with a phase velocity greater than v . Similar results are valid for the case ino

which the incident magnetic field is parallel to the axis of the cylinder (King and Wu,

1959).

The behavior of the scattered electric field near the cylinder when Ei is

parallel to the axis is illustrated in Fig. 2-7, for 0 = 0, ir/2, and r and for various

values of ka (Adey, 1958). It is seen that the back scattered field amplitude never

exceeds the incident field amplitude, and, for a fixed kp, increases with the cylin-

der radius (Fig. 2-7c). On the contrary, the amplitude of the forward scattered

field sometimes exceeds the amplitude of the incident field and oscillates about that

value (Fig. 2-7a), so that the scattered field in the shadow region and in the vicinity

of the cylinder surface does not behave like a divergent wave.

If a plane wave is incident on an infinite cylinder perpendicularly to its gen-

erators and at an angle 0o with the x-axis, then the far scattered field components
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in the electromagnetic case, or the far scattered pressure and velocity potential in

the acoustical case, may be expressed in the form

f 0 , as p--.co . (2.55)

The far field amplitude function f(0, 0 ) has the following well known properties (seq

for example, Karp, 1961):

f(0, 0) = f(oo0+r, 0+ir) , (2.56)

loo, 0o)j'do = -27 Re f(o 0 80) (2.57)
•0

Equation (2.56) may be obtained as a limiting form of the reciprocity theorem for

Green's function; relation (2.57) constitutes the so-called forward amplitide tbeo-

rem. In the case in which Ei is parallel to the generators of a metal cylinder

(acoustically soft cylinder), it can be proven that f(0, 0o) is a function of the dif-

ference (0 - 00) if and only if the cylinder has a circular cross section (Karp. 1961).

The far scattered field amplitude pattern that a plane wave at normal inci-

dence on a circular cylinder produces in the azimuthal plane depends upon the value

of ka; a particular case is shown in Fig. 2-8 (Faran, 1951). For small values of

ka the pattern is nearly independent of 0 (Fig 2-8a), but lobes develop as ka in-

creases (Fig. 2-8a, b and c).

The phase of the far scattered field is a complicated function of both 0 and

ka. In the case of electromagnetic scattering with Ei parallel to the axis of the

metal cylinder, the far scattered electric field easily follows from relation (2.37):

(E' ) ,a e' - 9 cos no . (2.59)z~~ H(1n )(ka)

n
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.50 2.= .

(a) ka = 5.0

(b) ka =3.4

FIG. 2-8: AMPLITUDE PATTERN OF THE SCATTERED PRESSURE pa PRO-
DUCED BY A PLANE WAVE WITH PRESSURE pi NORMALLY INCIDENT
ON A PERFECTLY RIGID C7LINDER. The scales show the quantity

u-- 1/2 Ipf/p I(7rkp/2) 2 asa inetion of 0. (Faran, 1951).
p44
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FIG. 2-9: DIFFERENCE BETWEEN THE PHASES OF THE FAR FORWARD
SCATTERED FIELD tND OF THE INCIDENT FIELD, WHEN El
IS PARALLEL TO THE AXIS OF THE PERFECTLY CONDUCTING
CYLINDER. (Adey, 1958).
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The difference 6 between the phase of the far scattered field in the forward direc-

tion • = 0 and the phase of the incident field, both evaluated at. the same point, is

therefore given by:

r C J(k) _

- ar J 4 (2.60)

n

and decreases monotonically from the value 5wr/4 at ka 0 to the limit value 3 r/4

for very large cylinders, as is shown in Fig. 2-9 (Adey, 1958).
1In the case of E parallel to the axis of the metal cylinder, the back scatter-

Ing cross section aE per unit length, defined as

E 8 12 = a2
a lira _2 liman•F- 1

E P p"-o. OD E i p--)-

z

is easily derived from relation (2.59). One finds that

-E A(ka), (2.61)

where

A(ka) = _)n1-11n (1.) (2.62)
n'"=O H(1)(ka) "n

This is also the cross section per unit length for an acoustically soft cylinder. Sim-

ilarly, in the case of H parallel to the axis of the conducting cylinder, the back

scattering cross section aH per unit length defined as

Hi H 2  s2Lim P z'D = lim 2irp-'a H = p ..+ - ) OD 2iP .-- 0m OD 2 1 p
z @2
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may be obtained from relation (2.39). One finds that
4

a -- B(ka) (2.63)
11 k

where

B(ka) = en (1)' (2.64)
n=0 H (ka)n

This is also the cross section per unit length for an acoustically rigid cylinder.

The quantities A(ka) and B(ka) are plotted in Figs. 2-10 and 2-11 for ka < 10

(Senior and Boynton, 1964). The broken lines show the geometrical optics approxi-

mation - ka (see section IV). It is seen that a is always larger than the geomet-

rical optics approximation a = wa and increases monotonically with ka, where-g.o.
as a H oscillates about the geometrical optics value as ka increases. The ratios

E/a and H/.a are plotted in Fig. 2-12.
E/cg. o. H/ g.0.

The total scattering cross section atota1 per unit length is defined by the

ratio of the time averaged total scattered power per unit length of cylinder to the

time averaged incident Poynting vector. In the case when E is parallel to the axis

of the perfectly conducting cylinder, one has that

t Re _i E (a, 0l)L z 1 ado (2.65)
ptotal

-rPl=a I

where the bar above Es indicates the complex conjugate. Observing thatz
Ez(a, 01) = -Ei(a, 01), and that

SEi(a,0l)- Z( i0] ado1 = 0

Pa

the total scattering cross section becomes:
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-8 01 0 a

'totalki ap1
P1:a

-Lkacosa~
- a•7 Re @(01 )e do . (2.66)

According to notation (2.55), the scattered field E given by (2.51) may be rewrit-
z

ten in the form:

a~ ilkp - -1)

E (p,) ) f(00, 0) f e , as p -- •( O (2.67)

where

f(, 0) = -( 0 5JzlJ1l)e l d1 e (2.68)

From formulas (2.66) and (2.68) the important result follows (Papas, 1950):

"total = - Re f0, 0) . (2.69)

The total scattering cross section per unit length is therefore proportional to the

real part of the far field amplitude function, evaluated in the forward direction.

Since the phase of f(O, 0) is given by (0 + r/4), where 0 is the angle plotted in Fig.

2-9, the real part of f(O, 0) cannot be positive, and therefore one has the obvious

result that atotal is never negative and becomes zero for ka = 0. From formula

(2.59) it follows that

O 'IJn(ka)

fgo, 0) =- ( a , (2.70)n H(lllka)
n

hence
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OD 12 (a

n J (ka) n(ka)ttl"4kn-0 en 2(k N2 *; (2.71)

where H (ka)a Jn(ka) +N(ka).

In the case in which a finite and nonzero impedance exists at the surface of

the cylinder, the calculations of far fields and cross sections become rather compi-

cated. From the computational viewpoint it is then advantageous to use the so-called

phase shift analysis. In this method the incident plane wave Is expressed as a sum

of modes, each of which is characterized by a certain angular dependence. The per-

turbation that the scattering body introduces in the field of the primary wave at large

distances from the scatterer manifests itself by a shift ny in the phase of the radial

dependence associated with the nth angular dependence. The phase shifts vn are

entirely determined by the boundary conditions and are. in general, complex quanti-

ties. Their knowledge permits the determination of the amount of scattered radia-

tion and of its angular distribution. The phase shift analysis is outlined in the fol-

lowing; further details may be found in the literature (Lowan et al, 1946; Lax and

Feshbach, 1948).

It was previously found that when a plane wave •ii =eikx propagates perpen-

dicularly to the axis of a cylinder on whose surface an impedance boundary condition

holds, then the scattered field is given by:

OD J I(ka)+ i(C -iD)Jn(ka)
0a = nn n(1 " (1) n

n=O H1 (ka)+i(C-W)K (ka)a
n a

where C and D are real quantities. In the acoustical case, ii and 0 are velocity

potentials and C - iD = uh/(Ck) is the relative (or specific) acoustic admittance of

the surface of the cylinder; the density 6 and the normal acoustic impedance C

were defined in section 2.1. In the electromagnetic case, if E is parallel to the

cylinder axis then _ Eiz @s -- ES, m.nd C - iD = Z-r1 is the relative surface
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admittance, whereas for H1 parallel to the axis, one has that H',= Os = Hs, and

C- iD - Z ;e is the relative surface impedance.

Formula (2.72) may be rewritten in the form:

0= n+l e'l ln Hll)(kp) cos no (2.73)Z ninl si n n
n=O

where the phase shifts yn are given by:

y= 6 -+arctan - i(C - iD)T (2.74)n n 2 +U n)•.

with

U tan(61 -6 + Z) T ka) + N J

n n n n 2 n a
(2.75)

6= arotan Nn(ka)i 6, = arctan
n N (k)nN'(a

Similarly, the diffracted field is given by

p = t~i+s = nie- +cos~nJk)+sin YnN nkýp (2.76)
n0

and the total scattering cross section per unit length by:

OD 2 Im 41m-n
-a 1 T k " - 2e "cos(2 Reyn) + e ni (2.77)

'total = -n= L .~ Jl

In particular, when E is parallel to the axis of a conducting cylinder one finds that

tan~ =_ tan6 n so that relation (2. 77) reduces to the form (2. 71).

The quantities 6., Un and Tn wh'ch appear in (2.74) can be computed with-

out specifying the impedance at the surface of the cylinder. Lax and Feshbach
(1948) published tables of T and U for the parameter values n = 0(1)20 and

n n
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ka = 0(0.1)10, whereas 6. 6' and LnJ'a+ N2(ka)j had been previously tab-

an Fl-n n .J

ulated by Lowan and associates (1946) for the same values of n and ka. Tables of

for n 0. 1 and ka = 0(0.2)16 may be found in the book by

Watson (1922).

The phase shift analysis is obviously not limited to cylindrical scatterers.

For example, Lowan (1946) and Lax and Feshbach (1948) also carried out extensive

computations for absorption and scattering by spheres. Finally, the method can be

applied to the more general case in which the impedance on the surfaco of the scat-

terer varies with the direction of incidence, by associating with the nth angular

dependence a quantity (C n- iDn) which is a function of the summation index n.

This section ends with a few remarks on the scattering of cylindrical and

spherical waves. If a line source parallel to the cylinder axis is located at (p = b,

0= ir), then the incident cylindrical wave is given by (Stratton, 1941)":

0i(p,0) = A H)(kR)
0

" n O( H1)n Hl)(kb)Jn(kp)cosn,
n=0 a n I

(2.78)
OD

A A (-1)n J (kb)H )(kp)cosno , p >b
n0 n n n

where R = (p2 +b 2 +2bp cos 0)/2 For a comparison with the case of plane wave
i ikx (1)

incidence in which 0, = e , it is useful to choose A = 1/H (kb), so that in both

cases 0 is equal to unity along the cylinder axis. The scattered wave may be writ-

ten in the form:

*Formulas (26) and (27) of Adey (1958) contain some misprints.
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8 OJ(ka)

= -Azle (-I)" j H (kb)Hn)(kp) coseno (2.79)
,=0 n 2H (1)(ka) n

a

where

C = 1 for 0p=a - d for a

=a ~~d(ka) a ~

and the coefficients have been determined by imposing the boundary condition on the

surface p = a of the cylinder. However, these calculations are sometimes unneces-

sary, since many results concerning the scattering of a cylindrical wave can be

derived from the known results ior the scattering of a plane wave. Thus, if the field

at the point (p = b, 0 = 00 (C I S0°)) due to a plane wave propagating in the direc-

tion 0 = 00 is known, then, or the basis of the reciprocity theorem, the far field In

the direction 0 = 180u .lue to a line source at (p = b, 0 = 00 (or 1800)) is also

known (Adey, 1958). Furthermore, it is shown by Kodis (1950, 1952) that if the line

source is ,ufficiently far from the cylinder and this is not too large, namely if

a 2/(2b 2) << 1

then the scattered field is essentially equal to that produced by an incident plane
i ikz

wave = e , whereas the incident field may be taken as equal to eIk(R b)A

few patterns of the far field amplitude of the pressure wave scattered by a rigid

nylinder were computed by Faran (1953) for different values of kb. Faran concluded

t' ore should expect little change from the plane wave scattering pattern, provided

that a/ *j < 0.1. Zitron and Davis (1963) computed a quantity proportional to the ampli-

tude of the far scattered field as a function of 0, for ka = 1. 0 with kb = 2, 5, 10, 20;

ka = 3.4 with kb = 6.8, 13.6, 17, 68; and ka - 10.0 with kb = 100, 200, 500, for

both Dirichlet and Neumann boundary conditions; they also pointed out that Faran's

curve for kb = 6.8 is incorrect. In the case of the hard cylinder, other results
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wore published by Shenderov (1961), who plotted the amplitudes of both scattered and

total far fields as functions of 0 for ka - 2, 6, 10 and b = 1. 2a, and compared

numerical and experimental dingrama of the amplitude of the total far field for

ka = 6, 10 and b - 5.2a.

Finally, since the entire following section is devoted to the case of dipole

sources, we here limit ourselves to pointing out that useful relationships exist be-

tween the current distributions on perfectly conducting cylinders of arbitrary cross

section (in particular, circular), illuminated by plane or spherical waves. These

relationships were established by Brick (1961), who utilized integral equations for

the electromagnetic field put into an appropriate form by means of a Fourier inte-

gral operation, and obtained the leading terms of series expansions in powers of

(kR0 )- by the methodi of steepest descents. Brick's results are thus valid for

kR >> 1, where R is the distance between the source point and that point of theo o
cylinder axis which belongs to the azimuthal plane containing the observation point.

2.3 Dipole Sources

In this section, we consider scattering from infinite cylinders when the exci-

tation is an elementary source, i.e., an infinitesimal dipole, located at a finite dis-

tance from the cylinder. Although some results are included for the case when the

dipole is on the surface of the cylinder, the subject of radiating slots, and the equi-

valence of slots and dipoles, is not treated. The reader is referred to the exhaus-

tive treatment of Wait (1959) which also has an extensive bibliography. Our con-

cern here is with sources off the cylinder and the limiting case is touched on only

briefly for comparison.

In 1943 there appeared two independent treatments of the problem of scatter-

ing of dipole fields by cylinders, Oberhettinger's and Carter's. Oberhettinger

derived the exact field scattered by a cylinder with the electric dipole oriented

parallel to the cylinder axis and also presented far field asymptotic approximations.

Carter used the reciprocity theorem and the results for plane wave incidence to cal-

culate the scattered far field for dipoles and arrays of dipoles.
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There are a variety of methods for deriving the expressions for the field scat-

tered by an arbitrarily oriented dipole. Although differing in detail, they share two

essential features, a representation of the field in terms of electric and magnetic

Hertz vectors and, ultimately, satisfying boundary conditions on the surface by suit-

ably matching the scattered part of the Hertz vectors with the incident field through

the expansion

ikR 1) -ih(z- z

where

P<= min (p, p)

P> =max (p, po)

The process is completely analogous to that employed earlier in the case of

plane wave incidence (of. Eq. 2.28) though more cumbersome due to the integration

over h. Here, as before, some special cases offer inviting simplification, e.g.

when the dipole is parallel to the axis of the cylinder and one Hertz vector suffices

to represent the entire field (this is the case treated by Oberhettinger (1943); see

also Wait (1959) and Harrington (1961)). It is also possible to construct the field due

to an arbitrarily oriented dipole by suitably operating on the field scattered by an arbi-

trarily incident plane wave (Senior, 1953). The resulting expressions, regardless of

the method used to obtain them, are cumbersome and the elegance exhibited by any

particular method is usually compensated by an atrocious calculation equivalent to

matching coeffic ients in expansions of the incident and scattered fields.
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In treating scattering problems when the source is an arbitrarily oriented di-

pole or distribution of dipoles (e.g. current), it Is now fashionable to employ the

dyadic Green's function, e.g. Morse and Feshbach (1953), Van Bladel (1964) and

Tai (1953, 1954a, b). This procedure enables one to formally discuss the solutions

of scattering problems without actually calling into play the inevitable complicated

representation of solutions of particular problems. Of course, if it is these partic-

ular solutions which are sought, then the tensor or dyadic Green's function, as a

labor saving device, loses much of its value. Still it does provide a systematic way

of presenting the results and a brief discussion will be given followed by the explicit

representation of the dyadic Green's function for a cylinder with a number of special

cases.

If the time harmonic Maxwell's equations for a current source J at a finite

distance from a perfectly conducting scatterer S, are written

VAE =fipH,
(2.80)

VAH = -k•E+Jo

then the electric field satisfies the inhomogeneous vector wave equation

V A VAE-k E = W_,

the boundary condition

KnAE 1 = 0 ,

and the radiation condition

rAVAE+ikE = o(l/r) . (2.81)

If V denotes the volume exterior to S, then the solution of the problem may

be written as
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iE ) •5G•-rl) --J(-lr)d-rl (2.82)

*v

where GLr,.r) * is the dyadic Green's function and satisfies

VAVAG-k 2G - 6(r-r1 )I

I is the identity dyad,

nAG

rAVAG+ikG = o(l/r).

The mine rectangular Cartesian components of the Green's tensor are nothing

else than the total electric field components for electric dipole sources oriented

along the coordinate axes. That is, if kwd is chosen to be Ix6(X - xo) then equa-

tion (2.82) yields

Er•, rO) 0 _xr)

If we use a superscript x to denote the orientation of the dipole source, i.o.

EX(_r) -- (rro)" x

then clearly
A

EZ(r) Q r

Thus we see that it is possible to construct the components of the dyadic Green's

SA double underlining will be used to denote dyads.
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function if we know the response of an arbitrarily oriented dipole source. In fact.

these are entirely equivalent pieces of information.

For a perfectly conducting infinite cylinder the dyadic Green's function ks

given by Tai (1954b) as

Q 8h n (3) (hr)M (-h, r)+C, M (3)-h, +nuo X2  Le en IN I--en

+ M3l(h, r)FM1)l(-h,r )+a M( 3 I(-h r.)1 +
-on - [K(on) 1 r-on+N(3) (h, r) Nl(-h, r.- + ONl(3)I(-h, r. "-+
--en - [-en -1 _-en -1,]

(3) % (1)+ N( (h, r) FN()(-h, r) + N1QN3)(-h, r.) for p>p1 . (2.83)--on -CLon -1 w3-on -,j P>Pl

where

=k 2 2h 2

M(horeihz sin • COS 2
(h Zrl) e nz •- n() no (P

e -P coo sin
0

ethz sia COSA n • n

Nenlh, r) ff h aZ(X) °)sin' no n()Cos

en k Lapsin n ZC

Jn(;a) J (Xa)

n n

The superscript (1) on M and N n signifies that Z is Jn, the Bessel function of
the first kind. The superscript (3Y means Z is the Bessel function of the third kind(1) n
or Hankel function H l). When p1 > p, r and r1 must be interchanged in (2.83).n -
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Equations (2.82) and (2.83) have been employed by Tai (1964) to obtain expli-

cit far field results for two electric dipole orientations, longitudinal and transverse

(also called vertical and horizontal dipoles).

The integration in (2.82) is easily accomplished since J is always a delta

function. The integration in (2.83) is carried out by the method of saddle points

(e.g. Wait (1959)). In the results both cylindrical and spherical coordinates areikIr
employed, so that the familiar factor e /r is exhibited.

Recall that

I =•VP2 + z2

sinG "

a) Longitudinal Dipole

The current is given by

6(p - Po)6(0- 0o) 6(z) A

S- -iwecA " z ,

where A is a constant (A = p(1) /, where p(0) is the dipole moment). The total

far electrin field is (compare with (2.29)):

Ae-ik 0 sin 0 cos(o - (o) J n ka sin O)
E=-0 4wrr ~i A[

E= r=O H in (ka sin O)

n 0O

The far field of a longitudinal dipole in an azimuthal plane (constant 9, 0 4 < <27,

see Fig. 2-14) is proportional to the far field of a line source (radiating at a longer

wavelength) parallel to the cylinder through (p0. 0o) (see equations (2.78) and (2.79)

where po = b, 0o = 7r). If the dipole radiates with wave number k, the equivalent
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line source radiates with wave number kainO. In the plane of the dipole (9 - r/2)

the wave numbers are equal. Explicitly, the far field of an electric line source

parallel to the cylinder axis ( T -1AH )(k -" 2po s o) ) is:

ikp - . -i

A 4 ikeoC°8(0 Fo)
E - i 1- jk F2p A [e O

Q J Hka.
; c-)n nc(1) () n

H ()(ka)nn

The field of an array of longitudinal dipoles of strength A, at points (p1, .)0 all in

the plane z - 0 is given by0

. ikr 2 -ikpi sin"e k2 -1

E - -0 L amn~kA e

O - HJn(ka a sin ) H(l)"kpslr0)cosn(¢ 
1 l.

n0O H ( 1)(ka sin 0)Jn (2.85)

Note that to this order in 1/r only E is nonzero.

b) Transyerse Dipole

6(p- p )6(0-0 0)6(z)i = -JLA _x•

The total far field in the plane of the dipole (60 - r/2, z is
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lkr -elkpcoOa("-0 O Jo(ka)iE A' k 2x ~
4r [Gin 2 Ae 4 W) (1)'( X

4ir TS~~ 2n=O H l(ka)n

X &(il_)(kpo) sin [n 1)-- j + H(1; p ) sin [no - (n + 00

(2.86)

The field due to an array of such dipoles of varying strengths, A,, is

AE F ,2 A, 7 _ 1 n+1 Jnka
r • 0 Hn (1)"lka)n

X- tH"l(kpl sin[non- in-1)01] () )•i
"n•-l I-+ Hn)ll•)nn-(+ 1Ol]

(2.87)

In this case only E is nonzero.
Note that In equations(2.84) to (2.87) the constants A or A, may be com-

plex, A, = -A, Ie"1, thus governing both amplitude and phase of the source.

Carter (1943) has carried out a large number of calculations of far field pat-

terns from arrays of longitudinal and transverse dipoles. The problem with which

Carter was concerned was that of achieving omnidirectional azimuthal radiation pat-

terns for arrays of dipoles around a cylinder (transmitting antenna on the Chrysler

building). His approach was to calculate the radiation patterns of various symmetric

arrays of dipoles with a variety of related phase differences between dipoles and thei

observe which pattern most closely achieved the desired shape. While this may not

now be considered the most direct way of treating this problem, the patterns calcu-

lated by Carter may prove useful for other purposes.

Carter employed the reciprocity theorem and the known results for plane

wave incidence to arrive at the expressions (2.84) to (2.887). This avoided the

asymptotic evaluation of the integral in (2.83), since the asymptotics are in a sense

alreeody carried out for plane wave incidence. For plane wave incidence Carter has
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computed the magnitude of the electric field as a function of distance froth. the cylin-

der for 0 = 0, rr/2, ir, 3vr/2 and ka = 1. He also calculated surface current for this

case and this has already been given in Fig. 2-6c. In the case of dipole excitation,

Carter has made numerous calculations. For a single longitudinal dipole the mag-

nitude of the electric field in the far zone is given as a function of azimuthal angle

in Fig. 2-16 for a dipole .24X from the cylinder axis and various cylinder radii

(-a/X = .0016, .0318, .08, .16, -s 24 ). Also included in this figure is the pat-

tern of a transverse dipole located. 24X from a cylinder of radius . 16k. The near-

ly circular pattern for the smallest radius is quite distorted, without any definite

relationship between the geometrical shadow and the shape of the pattern. However,

for large cylinders the pattern is quite different from the patterns of small cylin-

ders as seen in Fig. 2-17, where the far field is plotted for a longitudinal dipole

.878X from the axis of a cylinder of radius . 383)X. Carter attributes this to reso-

nance effects.

Carter's results for arrays of dipoles include longitudinal (vertical) dipoles

(1, 2, and 4 fed in phase) located .878X fro= the axis of a cylinder of radius .383X

(see Fig. 2-17), and 4 transverse (horizontal) dipoles fed in phase, phase rotation,

and pairs In phase, other pairs out of phase (see Figs. 2-18 to 2-20). The trans-

verse dipoles are located . 796k from the axis of a cylinder of radius . 637). The

patterns given here are in the plane containing the dipoles; additional patterns in

other planes are contained in Carter's original paper. A word of caution is called

for regarding the use of Carter's analytic expressions of the far field. Numerous

errors were found in these formulae, e.g. using Carter's equation numbers, terms

in equation (48) should alternate in sign, equation (50) is completely incorrect, a

factor j is missing from equation (51), terms in equation (55) should alternate in

sign, etc. A spot check of the computed patterns, however, indicates that the cor-

rect formulas were used and the errors apparently are typographical. A complete

recalculation of all the patterns was not undertaken. It is recommended that any

quantitative application of Carter's results be accompanied by a suitable verification.
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Lucke (1951) derived the Green's function for a dipole in the presence of a

cylinder (both elliptic and circular). The result is contained in ('. 83) and shall not

be repeated. An earlier version of Lucke's work (1949) contained an error in the

expression for the field but this was removed and agreement with Carter's result

was obtained. Lucke calculated the scattering pattern (see Fig. 2-21) for a longi-

tudinal dipole located .238,X from the axis of a cylinder of radius .076•. This is

almost identical with one of the cases calculated by Carter and the patterns do coin-

cide. (Lucke's scale is a factor ka - .5 smaller than Carter's and this must be

taken into account to obtain agreement).

Sinclair (1951), as Lucke, obtained some results for antennas in the pres-

ence of circular cylinders whil., investigating the more general case of elliptic

cylinders. His results agree with Carter and are easily obtained from the expres-

sion for the Green's function given in the beginning of this section.

Wait and Okashimo (1956) have calculated radiation patterns of a radial di-

pole and pairs of diametrically opposite in-phase radial dipoles, located on the sur-

face of a cylinder for cylinder radii a/X. = . 0315, .125, .335, .915, 1.54. The

patterns were computed from a theoretical result equivalent to (2.86) and (2.87) for

special values of "' (00 = 0 for single dipole and 00 - 0, 01 = ?r for the pair). The

patterns were compared, with excellent agreement, with the experimental results of

Bain (1953) and are presented in Figs. 2-22 and 2-23.

Oberhettinger (1943) computed the far field pattern for an electric dipole

parallel to the axis of a cylinder of radius a = X. The dipole locations were 5/4X,

3/2.X, 7/4 X, 2). from the cylinder axis and the patterns are all In the horizontal

plane (0 = 7r/2, see Fig. 2-24). The complexity of the pattern is seen to increase

with distance of the dipole from the cylinder.

Levis (1959, 1960) has made extensive calculations of a radial dipole on a

cylinder. This corresponds to a transverse dipole as defined in (2.86) when the di-

pole is normal to the surface of the cylinder as well as its axis, i.e., 0 o 0. He

has computed the real and imaginary parts of E0 and E0 as well as their magnitude
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ýý' D ipol*

FIG. 2-21: FAR-ZONE ELECTRIC FIELD PATTERN IN THE AZIMUTHAL
PLANE. FOR A DIPOLE PARALLEL TO THE CYLINDER AXIS
(Luck., 1951).
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FIG. 2-22a: RADIATION PATTERN (PROPORTIONAL TO THE AMPLI-
TUDE OF THE FAR-ZONE ELECTRIC FIELD) IN THE
AZIMUTHAL PLANE, FOR A DIPOLE ON THE CYLINDER
AND PERPENDICULAR TO THE CYLINDER AXIS.
Case a/X = 0.0315 (Wait and Okashimo, 1956).
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FIG. 2-22b: Case a/X = 0. 125 (Wait and Okashimo, 1956);
- - - experimental (Bain, 1953).
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FIG. 2-22c: Case a/X 0.335 (Wait and Okashimo, 1956);
- - - experimental (Bain, 1953).
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FIG. 2-22d: Case a/? = 0.915 (Wait and Okasbimo, 1956);
-- - experimental (Bain, 1953).
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FIG. 2-22e: Case a/X- 1.54 (Wait and Okashimo, 1956);
- - experimental (Bain, 1953).
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FIG. 2-23a: RADIATION PATTERN (PROPORTIONAL TO fEýj) IN THE AZIMUTHAL
PLANE, FOR TWO RADIAL DIPOLES DIAMET RALLY OPPOSITE
ON THE CYLINDER SURFACE AND FED IN PHASE.
Case a/k = 0. 0315 (Wait and Okashimo, 1956).
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FIG. 2-23b: Case a/X = 0. 125 (Wait and Okashimo, 1956).
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FIG. 2-23c: Case a/I = 0.335 (Wait and Okashimo, 1956)
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FIG. 2-23d: Case a/X = 0.915 (Wait and Okashimo, 1956).
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FIG. 2-23e: Case a/A = 1.54 (Wait and Okashimo, 1956).
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a, e 7 6t 5 4 3 21

FIG. 2-24a: RADIATION PATTERN (PROPORTIONAL TO lEel) IN THE AZIMUTHAL
PLANE OF A LONGITUDINAL DIPOLE LOCATED AT A DISTANCE d
FROM THE AXIS OF A CYLINDER OF RADIUS a = X.
Case d = 5 (Oberhettinger, 1943).

4
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2

FIG. 2-24b: Case d - X (Oberbettinger, 1943).
2
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7

FIG. 2-24c: Case d = - X (Oberhettinger, 1943).

85



THE UNIVERSITY OF MICHIGAN
7133-3-T

FIG. 2-24d: Case d 2)L (Oberhettinger, 1943).
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for X varying from .05 to .5 in increments of .05. The field quantities are tabulated

to five figures for the full angular range in increments of 5°. It must be noted that

Levis has oriented his cylinder along the x-axis, thus in order to compare his for-

mulae and calculations with Carter, Wait and Okashimo, etc., one must rotate co-

ordinates using the relations given explicitly by Levis.

2.4 Scattering of Evanescent Waves

In relation to certain physical phenomena, such as the Smith- Purcell effect,

it is of interest to investigate theoretically the scattering of an evanescent (or sur-

face) wave by an infinite metal cylinder. This study has been performed by Ronchi

et al (1961). and is summarized in the following. Another work on this subject has

recently been published by Levine (1965).

A concrete physical situation, in which this problem arises, is illustrated

in Fig. 2-25. A plane electromagnetic wave is totally reflected at the plane interface

A-A which separates two media with different refractive indexes, giving origin to a

strface wave in the medium with smaller index of refraction. The surface wave,

whose amplitude decreases exponentially as the distance from A.-A linearly in-

oTeases, and whose planes of constant phase are perpendicular to A-A, is scattered

by the infinite metal cylinder C. It is assumed that the distance d between interface

A-A and cylinder axis is so large compared to both cylinder radius and wavelength

of the incident radiation, that multiple scattering effects may be neglected.

The notation of Fig. 2-2 is used, but it is now assumed that the plane of in-

cidence (ft, Tz) forms the angle y with the positive x-exis. According to formulas

(2, 16), the components of the electromagnetic field incident on the cylinder are gen-

erated by the scalar functions:

1 = ¢ exp [ikxcosysina+ysinysina+zcosa] , 1,2),

where
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way. wave

A - 1 11- 'A

wave

li+W

FIG. 2-25: A SURFACE WAVE IS ORIGINATED BY TOTAL REFLECTION

AT A-A, AND IS SCATTERED BY THE CYLINDER C.

88



THE UNIVERSITY OF MICHIGAN
7133-3-T

0-0ksing

In order that the 1 'o represent an evanescent wave attenuated in the I direction,
01; xthe quantities cosa and sinysina must be real, whereas cosysina = iQ with Q

real and positive. These conditions may be satisfied in two different ways:

Case 1: a real,

W - I7 , 7' real positive;

Case 2:

a = -ia 0 a real (e.g. positive),

7 = x - i7" 7" real positive.

Case 1 is termed the case of "small attenuation", and Case 2 the case of "large

attenuation" (Ronchi et al, 1961).

The incident wave functions become, for small attenuation,

VI= V. exp(-kxslnh7' sina) exp [ik(ycosh7' sina + zcosa)]• 1, 2).

whereas for large attenuation

=-- , ecp(-_kx eoshy" sinhao) exp [ik(ysinhy7"sinho 0 + zcosha)

(I = 1.2).

Let us call 6 the angle between the z-axis and the dixection of propagation of the

phase, which is parallel to the (y, z) plane, Then, in Case 1

tan6 = tanacosh7' ,

and in Case 2 tan6 = tanha sinh".
o
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I-

The parameters of the evanescent wave, which have an immediate physical meaning,

are the angle 6 and the attenuation constant h, which equals ksinhyT sina in Case 1

and k coshy" sinha in Case 2. One can easily express a and y', or a and y" in0

terms of 6 and h:

sina =i"6 -cs

Case 1

sinhY'

s~nha 0 =( cos26 si2)

C case 2

coshyo n 1

0 5o 6 - si 6

It is then easily seen that Case 1 is valid for

and Case 2 for

h/k >, Itan6I.

in particular, Case 1 describes the condition of normal incidence 6 = w/2.

In the case of simall attenuation, one has that

01 0 ofke J a'(' s"a , (I =-1,2). (2.88)

n=-o9
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It is then found that tWe scattered field components are given by (2.16) with

a i ikz coo (1) Iry + ino ,)
e= aol e) sosc -ini)e- 1,a2),

n=-CD (2.89)

where

J (ka sinea) J' (ka sinc)
an D. 0 an = ()

n1 Hl )(ka sina) n2 H1) (ka sina)
n n

The corresponding results for large attenuation are obtained by replacing a

with (-Wo ) and y' with (Y'"+i) in (2.88) and (2.89). From the expressions of the
02

field components, it can be proven that in Case 2 the radiated field vanishes. This

is related to the fact that the wave number kcosha in the direction of the cylinder0

axis is larger than the wave number k in free space. Thus the scattering cross sec-

tion per unit length of the cylinder, which shows some sort of resonance for increas-

ing attenuation (Ronchi et al, 1961), vanishes for all h >kttan6L
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I,

III

LOW FREQUENCY APPROXIMATIONS FOR AN INFINITE CYLINDER

in the case of an Infinite circular cylinder, the low frequency or long wave-

length limit (ka << 1) can be derived easily from the exact power series solution.

The exact solutions for normal incidence are given in Eqs. (2.35) and (2.36). As

particular cases, we shall consider the parallel (1 - 0) and perpendicular (1 = r/2)

polarizations of the incident electric field.

The scattered field due to an incident wave with E parallel to the axis of a

perfectly conducting circular cylinder is given by (2.37). Since ka << 1, we may

limit our considerations to the first term of series (2.37); thus we have, in the far

field:

Es~~ ~ -••(ka) i(kp - •7

"E e (3.1)-- zH~lllka)

0

which is independent of the azimuthal angle 0. According to (2.61) and (2. 62), the

back scattering cross section per unit length is given by

1 J2lka)
4 0 k(3.2)

aE - 1 2 Jo(ka) + N(ka)
o o

and since ka -0:

2
aE . (3.3)k(logka)2

In the approximation (3.1), the total scattering cross section is also given by (3.2)

and (3.3):

aE - (aE)total . (3.4)

This result easily follows from Eq. (2.71).
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In the case in which H is parallel to the cylinder axis, the bistatic cross

section per unit length is given by

4 J'(ka) 2J'(ka) 12
0 1-+ 1 (3.5)

H k H( 1) (ka) H(1) (ka)
o1

Two terms in the exact series solution must now be considered, since they are of the

same order in the limit ka-* 0. In particular, the back scattering cross section

corresponds to 0 = ir, and is given by:

0 H ,4-k- 92() 4 . (3.6)

The total scattering cross section is obtained by integrating (3.5) over all values of

0 (Panofsky and Phillips, 1956).

3 ,tta .1 r 2(ka)3 a . (3.7)(H total 4--

Lord Rayleigh was the first to use potential theory solutions to construct long

wavelength acoustic and electromagnetic approximations for both two-dimensional

and three-dimensional problems (Strutt, 1897). The advantages of Rayleigh's metho

are not very evident in the case of a circular cylinder, because the exact solution is

well known. Rayleigh first determined the fields in the region a < p < X by using

potential theory approximations. He then introduced these intermediate fields in

Green's integral in order to derive the far field form. In particular, he showed that

the potential of a scatterer in a uniform field is the near field limit of the corre-

sponding scattering problem solution, and that this yields the first term of the far

field expansion.

Let a plane sound wave, whose velocity potential is given by

i= e- ikpcos (3.8)

be incident on a circular cylinder whose radius is small compared to the wavelength.
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By expanding in series of Bessel functions (Strutt, 1945; sections 341, 343):

e-ikp coo 0 _ 0o(ko) - 2*JI(kp)cos +...+2(-i)nan(kp) co+.... (3.9)

For small ka,

S•ij l-k 2 a2 -1kacos +... (3.10)4 'Ipea

= -- Ik 2a-Ikcosa+... (3.11)
dPr 2pea

The veol Ity potential of the wave diverging from the cylindrical obstacle is given by

s 0 Do(lo) + SID1 DkI(kp) +... (3.12)

where So, S 18 ... are trigonometric functions,

0 \72 2 2-2 2 2.42

D (k) =dD 0 (p)
D1(kp) d(kp)

- (k 2j2 2"21) 22. 4 +

k k_.a k .. (3.13)
2 2 22 .4

and -y = 0.577215... is Euler's constant.

Suppose that the material of the cylinder has density 6' and compressibility

mi, and let 6 and m be the corresponding quantities for the surrounding medium.

All special cases can easily be obtained bygivingappropriate values to a' and m'.

Inside the cylinder (Strutt, 1945; section 339):
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A22 1 04 A Alp §1 2- 4 .2.8+ '" 0
(3.14)

where k' is the internal value of the wave number.

Outside the cylinder (Strutt, 1945; section 341):

outsde B( + logk) + B1 0os 9 (3.15)

The conditions to be satisfied at the surface of the cylinder lead to the following

equations:

-A k'2a2 = -k2a2+ 2B (3.16)
0 0

art.( -k2a2) 1- k2a- +Bo + , (3.17)

4 B- (3.19)

Solving the above equations, we get

2 k 2 m'-m (3.20)

BA = -kk2a2  +- . (3.21)

We can now write the velocity potential of the scattered wave at a large distance

from the cylinder as
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s 2a2 ikcp (r%)l/2 . (3.22)
a \p ~ 2m' 6t+6

The conditions in' -* ao, 6'- co correspond to the case of a hard cylinder,

22 a +. cos- - (5.23)

P 12 _3/P2 P

The case m' - 0 gives rise to an extreme case when the zero order in circular har-

monies becomes infinite and the first order term is relatively negligible. This

corresponds to a boundary condition of evanescence of (kI + •s) in which ip = 1

(often referred to as the soft cylinder boundary condition). Therefore:

So'<y+Iog2-)+l - 0 . (3.24)

For large kp:

Sikp k ,,,p 1/2(3.25)

vy+ log M\j- p

The problem of electromagnetic wave scattering is analytically identical to

the problem of scattering of acoustic waves in two dimensions by small cylindrical

obstacles. One can identify ;i and ei with E or H where E is the electro-z z 2

motive intensity parallel to z and H the magnetic force parallel to z. We alsoz

replace 6 by the electrical conductivity a and 1/m by ;, the permeability, and 61

and 1/mi by a' and /'. the values of a and ;A inside the cylinder. The expres-

sions for E and H are identical with (3.22) and (3.25).z z

Lamb (1924, section 304) has included a section on plane wave scattering by

a cylindrical obstacle in his book on hydrodynamics. He has made reference to

Rayleigh's contribution; the method used in Lamb's book is identical to Rayleigh's

96



THE UNIVERSITY OF MICHIGAN
7133-3-T

method, for the case of normal incidence of a plane sound wave scattered by a rigid

circular cylinder. He has also given the expression for the total scattering cross

section for the above case in the long wavelength limit, and this agrees with our

equation (3.7).

The expressions for scattering cross section in cases of E and H-polarized

waves for arbitrary cylinders in two dimensions are derived by Van Bladel (1963).

He has applied the low frequency limit for the Green's function in the integral equa-

tion and his results for the special case of circular cylinders agree with equations

(3.3) and (3.7).

It is clear that the scattering cross sections depend markedly on the polari-

zation of the incident waves, and this has been discussed by Kerr (1951). As ka

increases, a E/ag.o. decreases monotonically and rH/ar.o . oscillates, departing

markedly from the fourth power law (see Fig. 2-12). Some considerations on the

low-frequency total scattering cross section for a cylinder with impedance boundary

conditions are developed by Lax and Feshbach (1948).
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lv
HIGH FREQUENCY APPROXIMATIONS FOR AN INFINITE CYLINDER

In this chapter, we consider only the cases of cylindrical and plane waves at

normal incidence for both polarizations of the electric field (EL parallel or perpen-

dicuhlr to the axis of the cylinder). The results obtained for a perfectly conducting

cylinder by means of geometrical and physical optics approximations, of the geo-

metrical theory of diffraction, and of asymptotic expansions of exact solutions are

presented In Sections 4.1, 4.2 and 4.3, respectively. The case of a cylinder with a

nonzero surface impedance is briefly examined in Section 4.4, and all results on

radar cross sections are collected in Section 4.5.

4. 1 Geometrical and Physical Optics Approximations

Let us assume that the wavelength ;k of the incident radiation is very small

compared to the radius a of the cylinder. Under this assumption, the scattered

field in the illuminated region may be approximately determined by a simple ray-,

tracing technique. Consider a plane incident wave propagating along the x-axis,

perpendicularly to the axis z of the cylinder; since the problem is essentially two-

dimensional, we may restrict our considerations to the azimuthal plane of Fig. 4-1.

A thin beam AA, of rays impinges on the cylinder surface at BB' where it is re-

flected and scattered in the angular range PPI; we want to determine amplitude and

phase of the scattered field ra at the point P(p, 0), located at a large distance from

the cylinder (p -o co. 0- 0). The energy per unit time carried by the incident

beam is proportional to

I0, I(A.AJ) t& I 12 a nO sin~
2'

whereas the energy that the scattered wave carries through PP' per unit time is

proportional to

-. (P ) 2 (PP.) = 2 .
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FIG. 4-1: GEOMETRICAL OPTICS APPROXIMATION
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since no absorption occurs at BB', these two expressions must be equal by cunser-

i vation of energy, that is

The phase of the scattered wave is easily determined by observing that the difference

between the geometrical paths A OP aid ABP of Fig. 4-1 is given by 2asin I
0

Thus

argoS(p,0 ) = k(p - 2a sin•) +o

where fo is a constant angle which depends on the boundary conditions. For an
acoustically hard cylinder (H5 parallel to axis of conducting cylinder) ko = 0,

while 1o = 180o for a soft cylinder (Et parallel to axis of conducting cylinder).

Therefore, a plane electromagnetic wave normally incident on a perfectly conductin

cylinder with

Ei ikx
- z

produces a geometrical optics far scattered field (p --* o, 0 •o 0):

ik(p- 2asin )
(E) sin e (4.1))g.o. 2p 2

whereas a plane electromagnetic wave with the other polarization, i.e.

H.i = 1 e ,

produces a geometrical optics far scattered field

= 2. in 2 (4.2)
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In particular, the geometrical optics back scattered fields are:

(Eb S.) = k(p- 2a) (4. la)

for Ei parallel to the axis, and

(b.S) .a ik(p-2a) (4.2a)
(Hr7 g.o0. V c JA pe(.a

for Hi parallel to the axis. In Section 4.3 it is shown that the geometrical optics

fields given by (4. 1) and (4.2) are the leading terms of asymptotic expansions of the

exact fields.

The physical optics approximation represents a refinement of geometrical

optics. It is recplled that the physical optics approximation method consists of two

steps. Firstly one obtains the total electromagnetic field on the illuminated portion

of the surface of the scatterer by assuming that at every point the incident field is

reflected as though an infinite plane wave were incident on the infinite tangent plane,

and the field on the shadow portion of the scatterer is assumed to be zero. Then,

an integration over the illuminated surface of the body gives the scattered field.

The physical optics current density J on the surface of a perfectly conduct-

ing cylinder has been given by Riblet (1952) for both polarizations of the incident

plane wave. If

i A 1tkxE i ze

then from (2.41):

J = Jz (21) -1 2 - e• sin feikz coos0 for •-1< •<2

- zr z z p=a

(4.3)

o'0 for I
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I whereas if

then from (2.42):

pj =0E~ ~ 2 felpka cos~ for - 3r
p=a

(4.4)

-,o for 101<!.

If the expressions (4.3) and (4.4) are substituted into formulas (2.51) and (2.50) re-

spectively and an approximate evaluation of the integrals is carried out, the physical

optics approximations to the scattered fields E and He are obtained.z z

Riblet (1952) considered (4.3) and (4.4) as the leading terms of asymptotic

expansions of the current in inverse powers of ka. By substitution into Maxwell's

equations and imposition of the boundary conditions, he was able to determine a

first order correction to (4.3) and (4.4). The absolute value of the ratio between

the correction terms and the leading term is equal to E2kasin3(0/2)-1. These

corrected physical optics currents represent an improvement with respect to the

approximations (4.3) and (4.4) only in the angular range 27r/3 < 0 < 47/3.

Finally, we shall give a brief account of the Luneberg-Kline method (see,

for example, Keller et al, 1956) for obtaining the high frequency expansion of the

field reflected by an arbitrary obstacle, and shall state the explicit results for a

circular cylinder. Assume that the wave function 0, (V2 + k2 )0 = 0, has an

asymptotic expansion of the form

eik• Vn(Xy,yz)

SH L as k-*-+ . (4.5)n=O (ik)n

Inserting (4.5) into the wave equation and equating to zero the coefficient of each
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power of k, we find:

)2 (4.6)

2Vv n. V+ v V = -V2vn 1 . (4.7)

(n = 0, 1,...; V-1 = 0)

The elconal equation (4.6) determines the phase function i° whereas the v 'I aren

obtained from (4.7) by iteration. If s denotes the arc length along an optical ray

(i.e. a curve orthogonal to the wavefronts 4 = constant), then the solution of (4.7)

can be written in the form:

F 1(s 1/2 1 (s)]/2 [ (t)]-1/2 ,2v

v(s) = Vn(so) L o n(t) - (4.8)
ly(s)d

0

where G(s) denotes the Gaussian curvature or, in two dimensions, the ordinary

curvature, of the wavefront f = constant at the point s on a ray. In particular, it

is easily seen that v0 varies along a ray as the inverse of the square root of the

cross sectional area of a narrow tube of rays, as was previously found by energy

conservation.

This method has been applied by Keller et al (1956) to a variety of problems,

among which is the reflection of a plane wave by a large circular cylinder. For a

soft cylinder (011 = 0) and 01 = e the reflected field at a point P(p, 0) is

(see Fig. 4-i): .p a
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l~ren. ~n to 3s •-•-i(@)~~ x[ik (sa -aain !0-)] x

(le refl. -2 Us 2 "

xli~ l~ sin 05f(a/2 )n n)21 (4.9)
X11 " 21 ;j a,,,,,h-t-
n:0 h=0 (I0

where the angle 00 is shown in Fig. 4-1.

The coefficients a%, satisfy the following recursion relations for h j 0:

a ht - h- 1 2h+4V+2n- 3)(6h- 41-2n - 1)a h-,1, n_ +

+ (2h- 41 - 2n+ 5)(2h - 41 - 2n+ 3) ah-1, -11. n-I +

+ [24(h - 1)(h - 21 - n) - 6] ah_2, 1, n-1 +

+ 12(1 - h)(2h- 41- 2n+ 3) ah_2,1-1, n-1 +

+9(2h.5)(l- 2h)ah_3,in.1 + 9(2h-5)(2h-1)ah_3 ,1, (4.10)

while for h = 0 we have:

3n

a Ln=-..ah , a = -2 .(4.11)

h=1 0

In particular, the first few terms of the series (4.9) are:
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Fa FýI refl. " 2a 2 2 asin 2)>

+8 3 + (

16kal 2 7 [2k 21 T/
sin 2 3in• 0in'

+ (A3- 9am-)+ ,((,a !~0- ) +
sin 2 (4.12)

In a plane z = constant, the family of wavefronts is a family of parallel curves with

the optical rays as common normals; these rays do in general possess an envelope

which is called the caustic of the wavefronts; the distance s which appears in (4.9)

and (4.12) is measured along a ray from the caustic to the observation point P(p, 0).

With reference to Fig. 4-1, we have that

a = BP + 0 s(n !0- (4.13)
2 2

In particular, in the far field (p --a c, o 0 .):

s , p -. sint (4.14)

so that formula (4.12) becomes:

~ ~ sin1 e - 2 a sin2
(0 ep A sin e (p--'co) (4.15)1rf. 2p 2

where (Keller et al, 1956):
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IAI,,1+ (3477 7218+ 3817)

(l~a)2 ~f 2  2

and, in particular, A '- -1 as ka becomes very large.i ik
For a bard cylinder (8P 2 /9P p=a 0 ) and @2 = eik the reflected field at a

point P(p. 0) is still given by (4.9) and (4.10), but (4.11) must be replaced with the

following (Keller et al. 1956):

"an.kl ahtn+ 16(21 + n- l)ah + 16 (4 - 2 -"n" 2 h)ah l, -]

(4.16)

a -+2.
000

Explicitly, the first few terms of the expansion are:

s •, lasin-2 expitk)s_
(Jb)rf a 2. !0 ex i ( a sin 0/ 0 X

2 2 2 ~ nk -T 2s
si 2 sin :2 sin2 A

n2  (4.17)

where s is given by (4.13) and o is indicated in Fig. 4-1. In the far field,

approximation (4.14) applies and result (4.17) becomes:

( s•a J2 ik(p -2a sin 1)
(@s) f B a in .8p'2 e 2 (p- - O) (4.18)

2; refl. 2P
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where (Keller et al, 1956):

(16) (3477 6642 3049
BI 1l +, .2 - + 47 " (4.18.)

22 2

and, in particular, B - 1 as ka becomes very large.

The far fields (4.15) and (4.18) include the terms O(k2 ) in the asymptotic

expansion (4.5) and they coincide to 0(k'1) with the results that Imai (1954) ob-

tained by saddle-point evaluation of the in the exact expressions (2. 45) and
B -2

(2.46), respectively. Imai did not carry his computations through O(k ). The

leading terms in (4.15) and (4. 18) are the geometrical optics fields (4. 1) and (4.2),

respectively. Keller et al (1956) plotted the amplitude of the back scattered fields

(0 = r) vs. ka, for both polarizations and for 1 < ka < 4, and the amplitude of the

far scattered field vs. 0, for both polarizations and for ka - 4, 40 and infinity;

their diagrams are based on formulas (4.15) and (4.18).

The Luneberg-Kline method does not take into account the diffraction effects,

but considers only the reflected part of the scattered field; the remaining part is t

so-called creeping wave contribution, which is described in the following sections.

4.2 Geometrical Theory of Diffraction

The geometrical optics approximation does not account for the presence of

nonzero scattered fields in the region of geometrical shadow, and often represents

an insufficiently accurate approximation in the illuminated region. A better approx-

imation is represented by the so-called geometrical theory of diffraction of Keller,

which is an extension of geometrical optics. For a description of this theory, the

reader is referred to a paper by Keller (1956), in which the extension of the laws of

optics is presented in two equivalent forms. In the first form, the different situa-

tions in which diffracted rays are produced and the different kinds of diffracted rays

which occur in each case are explicitly described. The second formulation is based

on an extension of Fermat's principle. The equivalence of the two formulations
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follows from considerations of the calculus of variations. Keller's theory assigns
a field value, which includes a phase, an amplitude and, in the electromagnetic
can, a polarization to each point on a ray. The total field at a point is postulated

to be the sum of the fields on all rays which pass through the point.

Keller's theory has been developed for both scalar and vector fields and for

objeats of various shape and type (e. g., acoustically hard and soft bodies, perfect

coeduotors, dielectrics); the results depend upon the nature of the object in an

essential way. For example, a very detailed application to the diffraction of a sea-

lar or vector wave by a smooth convex opaque object of any shape has been made by

Levy and Keller (1959).

From its similarity to geometrical optics, Keller's method can be expected

to yield good results when the wavelength is small compared to the obstacle dimen-

sions. However, it has been found that in most cases the results are useful even

for wavelengths as large as the relevant dimensions of the scatterer. An important

advantage of the method is that it does not depend on separation of variables or any

similar procedure, and it is therefore especially useful for shapes more compli-

cated than a circular cylinder. In fact, in the case of a circular cylinder, the solu-

tion obtained by the geometrical theory of diffraction coincides with the leading

terms in the asymptotic expansion of the exact solution for large ka (Levy and

Keller, 1959).

If R is the distance between the observation point (p, 0. z) located off the

cylinder surface (p > a) and a line source parallel to the cylinder axis and located

at (p =po>a, = 0) andif

i -- ikR +i-
i 1 -1 e (4.19)

is the incident field, then the scattered field t&a may be written as
•8 5 5

?k a +0 a (4.20)
g. o. d
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where is the geometrical optics field (which, in particular, is zero in the
0i o0

geometrical shadow), and d is the diffracted field which is given by (Levy and
Keller, 1959)

ad =(8k)-1/2 [2_ - a2 _ 2 -1/4

QP. ) - ( a)(P-0 a2~

F r 221/2 2_2 1/2 ILIw
)c exp ak [a a) + (p a .+-

2 exp [(ka-"-aa 1] + exp [ika- a,)(27r" w

X +arc cos )]. (4.21)

The diffraction coefficients D, and the decay exponents a, are determined by com-

paring (4.21) with the leading terms of the asymptotic expansions for exact 3olutions

-1
aI = ik-ivla 1 (4.22)

5 = AT-F 1 / H(2)(ka) 1/2
i8 12,\1/4 fH,(a

D, = e 8 L• H1)kaj . (4.23)

The expressions on the right-hand sides of Equations (4.22) and (4.23) are defined

below, in Section 4.3. Values of a, and D, based on these equations, and the

operator fn are given in Table I for the three types of boundary conditions consid-

ered in this report (Levy and Keller, 1959). In this table, A(q) is the special

representation for the Airy integral which has been employed by Keller and Franz,

and which is related to the integral Al of Miller (1946) by the equation:
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A(q) " co,(t3 -qt)dt - 3"l/3,Ai(-3"1/3q). (4.24)

For a scatterer of general shape, the diffracted field is given by formulas of

which (4.21) is a particular case (see, for example, formula (11) of part one in the

paper by Levy and Keller (1959)). These formulas involve the incident field, vari-

ous geometrical quantities, the diffraction coefficients D, and the decay exponents

a . If we assume that the leading terms in D, and a depend only upon the radius

of curvature of the scatterer's surface in the normal plane tangent to the optical ray

and on no other geometrical property of the scatterer, then D, and a, can be

determined from the field diffracted by any object of simple shape, e.g. a circular

cylinder. Thus, the geometrical theory of diffraction is of no help in determining

the high frequency behavior of the field scattered by a circulary cylinder; on the

contrary, it is the knowledge of this behavior (achieved by asymptotic expansion of

the exact solution) which allows us to determine in the easiest way the geometrically

diffracted field for any smooth convex opaque object. Of course, small correction

terms to D, and a, do involve other geometrical properties of the scattering sur-

face, and in order to determine these additional terms it is necessary to consider

the particular shape of the scatterer.

If the line source is removed to infinity and we take into account only the

first term (0 0) in the series (4.21), and if the electric field of the incident plane

wave is E = T e k then the far back scattered field is given by (Levy and Keller,

1959):

Eb. s. - a lk(p-a k (4.25)
z e

where
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143/264/3 -2o (ka)-l6e /3(ka)I/3 sin

Jk) 1- 4r 6 [ q exp 31 6

i exp +ka(7+2)+irq'6-1/3 (ka) /3cos (4.26)
D2 3.J'

q' = 3.372134 is the smallest zero of the Airy function A(q), and Ai(qo) = -1. 059053.
0 0

The first term on the right-hand side of (4.26) represents the geometrical optics

contribution, in agreement with (4. la). The second term in (4.26) represents the

diffracted field, and may be neglected to the level of accuracy of formula (4.25).

Thus IJ(ka) I = 1, as is shown by the broken line in Fig. 4-2.

For the other polarization (rigid cylinder), such that H = 1 Tel'/ ei, the

far back scattered field is approximately given by (Levy and Keller, 1959):

S' * -• , F eik(a-2a) H(ka) , (4.27)

where

1+21r3/2 6-1/3 -1 (qo-2 _1/6exp -7qo6-1/3(ka)l/3snZ
H(ka) = 1q Aq)]J(ka)' ex~r 3

'Xexp [12 + ia(a +2)+iq o6-/3(ka)l/3cos 3] (4.28)

q0 = 1. 469354 ip the Emalleat zero of the derivative A'(q) of the Airy function, and

A(q ) = 1. 6680. The first term in (4.28) represents the geometrical optics contri-

bution, in agreement with (4.2a), whereas the second term represents the diffracted

field contribution. The quantity IH(ka) is plotted in Fig. 4-3.

If the geometrical optics portion of (4.25) and (4.27) is replaced by the

asymptotic expansion of the reflected field in inverse powers of ka (Keller, Lewis

and Seckler, 1956), then higher order corrections to the diffracted field must also

be introduced. The most important of these corrections deals with the decay expo-

nent a•, and for cylinder and sphere it was found from an analysis of the asymptoti
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1.3.

1.2"

1. 1. ý 1(ka)j

1.0

0.9. irkal a
0. I
1 2 3 4 5 6 7 8 9 10

FIG. 4-2: AMPLITUDE OF FAR BACK SCATTERED FIELD FOR A SOFT
CYLINDER NORMALIZED TO THE GEOMETRICAL OPTICS
VALUE THE DIFFRACTED RAYS HAVE A NEGLIGIBLE
EFFECT (Levy and Keller, 1959)
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1.3

1.2

0.7

0.6ka

1 2 3 4 5 6 7 8 9 10

FIG. 4-3: AMPLITUDE OF FAR BACK SCATTERED FIELD FOR A RIGID
CYLINDER, NORMALIZED TO THE GEOMETRICAL OPTICS
VALUE ja/2p . (Levy and Keller, 1959).
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expansion of the exact solution by Franz (1954). With these modifications, the

quantities J(ka) and H(ka) In Eqs. (4.25) and (4.27) are replaced by J(ka) and H(ka),

respectively, where (Levy and Keller, 1959):

.eka) + 51 127
512(ka)2

43/2 6_ )-2(exp 'i (v 2 +2ka+#1)]
[wA3/2 6(4/3 )] (k.)-1/6 exp (r ) (4.29)E 1 - exp(21xr v2)

ff(ka) = 1-1 253 +
l~a 512(ka)2

+ 213/2 6_1/3q i A(qo)- 2 (ka)_l /6 exp• - 1 +2ka+ (4.30)1- exp(2i1rv
1 )

with:

1/3 -- 1/3 -e 31 Xlk_ 3 , 2e
V ka +- qe e 180 (4.31)

2 \6' 0o 8

k a ,1 / 3 1 - 1 /l 3 e- 1o . .q ,V1- kL." (U6_) qoei 6) e-W T8 (4.32)

The quantities IJ(ka)j and IH(ka)l are plotted in Figs. 4-2 and 4-3, respectively.

4.3 Asymptotic Expansions of Exact Solutions

In this section, we shall review the main results obtained by Franz and his

collaborators (Franz and Deppermannm 1952; Franz, 1954; Franz and Galle, 1955),

Imai (1954). Wetzel (1957), and by the school of Fock (Fock, 1945, 1946; Goriainov,

1958). It is obviously impossible j give an account of the many papers written on

115



THE UNIVERSITY OF MICHIGAN7 133-3-T

high frequency scattering by circular cylinders, and therefore only those works whic
contain new important Information are explicitly mentioned, whereas many others a
simply listed in the bibliography at the end of this report. We shall first consider t
case of line sources parallel to the cylinder axis, and then discuss in some detail the
case of plane waves at normal Incidence, for both polarizations.

Let us consider a line source located at (p = p 0 0 = 0) parallel to the axis of

the cylinder, and such that

H- 0 1(kR) , (4.33)

where, as usual, R is the distance of the observation point from the line source.

Then the total field kb must satisfy the equation

(V2 + k)= -p- 16(p-po)6(0) , (p>,a)

the boundary conditions at p = a and the radiation condition (2.19) at infinity. One
has that (see Eq. (2.79) where, however, the source iL at • 1800):

C (kpo -k •_ H(l)(kp H(1)(kp>)cosno, (p >a), (4.34)
€ "4 Z= n [jH(1)(kn

n= IHn
where p< and p> are, respectively, the larger and smaller of p and pc, and the

operator fl is given in Table I of Section 4 2 for the three types of boundary condi-

tions considered. The sum (4.34) may be written as

iv( -70H (1)kp>

8 sin(v 0 HC ';(ka)C1 V/

X•[nHUl)(ka) J,(kpl - WJ (ka) H,(I(kpr dvi (4.35)
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where the contour C encircles the entire real axis in the clockwise direction, or

also, replacing v with -v on that part of C1 for which Imiv< 0, as

Cooe(O-ir] H (1) (kp>)1 V
' sin(7rM)(')(ka)

2 V

X [r H(,)(ka) J,(kp<) - nJLi(ka)H~l)(kpý]dIJ (4.36)

where the contour C2 is in the upper half-plane, just above the real axis and running

parallel to it. Both results (4.35) and (4.36) are as exact as the series solution

(4.34).

The contour integral (4.36) has been asymptotically evaluated by Franz (1954)

If the observation point (p, 0) lies in the geometrical shadow, the contour C2 can be

closed in the upper half-plane and the integral evaluated by computing the residues at

the zeros v, of QH ()(ka):

= r. cos E1,(0- wi O2H ~(2) 1O H~1)(kp )H~l)kp (4.37)
4 sin(wl) -L (k(1olk) j, 0 IVA

This residue series converges rapidly in the shadow region (source and observation

point geometrically invisible to each other) and very slowly in the illuminated region.

Therefore, if the field point belongs to the illuminated region, it is convenient to

split the integral (4.36) into the sum of two integrals by means of the relation

cos [L(o - = eiIf cos(v) - ie,' 0 sin(vi1) . (4.38)

and then convert one of the two integrals into a residue series, obtaining (Fran-,

1954):
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ir C NCV1 ) 0 vi fl111 2)(ka) H~l) (kP )H (1)(!;p) +
4 1 osi(vir) &______) , V

+. e v (1)() ,.,,H(l)(ka)H (2)(kp M ()(kp d. (439)

(1) V
C2  U

The residue series in (4.39) converges everywhere except in the forward direction

0 - ir; however, (4.39) is of interest only In the illuminated region, since in the

shadow we may profitably use the simpler representation (4.37). The contour Inte-

gral in (4.39) may be asymptotically evaluated by saddle point technique, and repre-

sents the sum of the primary field and the reflected part of the scattered field, where-

as the residue series represents the creeping wave contribution to the scattered field.

The quantities q, and L fH(2)(ka)1[ l

are given by the second and third columns of Table I in Section 4.2, and v is re-

lated to q, by:

1/3 i1
Vka+(]) e 3 q,+"" (4.40)

In order to compute 0 from (4.37) or (4.39), it is necessary to know the positions of

source and field point, so that the appropriate asymptotic expansions of the Hankel

functions of arguments kp and kp may be used. For example, if both line source
0

and observation point are very far from the cylinder (p --- ao, p --p o), then (4.37)
bomes:
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exp ik 2 - a2/2+(p - a2)/ exp(iv,0)+exp(iy,(2wr ,)

21k P._ a )(P2 - a 2'/4 1-- exp(2 iv,)

•<expEiy (rccos- +arecos"o-)] F 8  (2 (ka) (4.41)
P PO Q~H( 1) (ka)J9° VJ• -H~ l•V=V!

In the remaining part of this section we consider in some detail the case of a

plane wave incident perpendicularly to the axis of the cylinder. The first rigorous

treatment of this problem in the high frequency region is due to Franz and Depper-

mann (1952), who introduced the concept of creeping waves; they based their deriva-

tions on Maue's integral equation (1949). The same problem has been treated by

L-nai (1954) in a different way; he starts from the solution for the scattered field in

the form of an infinite series and transforms it into contour integrals (see formulas

(2.45) and (2.46)), which he evaluates by the saddle point method and the residue

theorem obtaining the scattered field at a large distance from the cylinder. Specific-

ally, a saddle point evaluation of the two iutegrals"SB in formulas (2.45) and (2.46)

gives the reflected part of the scattered field, whereas the other integrals EEare

transformed into residue series whose terms correspond to the creeping waves of

Franz and Deppermann. The results of Imai are not given here, because more ac-

cumate approximations were derived by Franz and Galle (1955)*.

The convergence of the asymptotic series obtained by Franz and Galle (1955)

is rather poor over certain regions of the azimuthal angle 0. This inconvenience

*Imai (1954) pointed out some errors in the derivations of Franz and Deppermann
(1952); for example, he showed that their contributions due to reflections from the
shadow side do not exist. In turn, Franz (1954) remarked that the numerical values
which appear in Imai's formulas (7.8), (7.18), (7.22) and (8.16) are incorrect.
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has been avoided by Gorialnov (1958), who has derived asymptotic expansions for both

surface l'u rent and far field and for the whole range 0 • < 2w by applying a tech-

us developed by Fock (1945, 1946). Gorlainov's results for surface current den-

ity and far field differ by at most a few percent from the exact results for ka = 5

d, of course, become more accurate as ka increases.

In the following, besides the azimuth 0, 0 •< 0 < 2w, we shall introduce the

sle C, -w < C < w, defined as

0 =.Jfor 0< ,

for > v.

o, we shall make systematic ise of the symbol m, defined as:

m = (ka/2)13

Let us consider a plane electromagnetic wave incident in the direction of the

regative x-axis, such that

Ei z e H= / 1T3 e- (4.42)S z ' - y"

The current density on the illuminated portion of the surface (p - a, .< 7r12) is

given by (Franz and Galle, 1955):

For a history of what is presently Inown as the Fock method see the first volume
Logan (1959), in which a detailed discussion of the notations employed by various
authors i also given. A brief exposition of Fock's theory has been given by Goodric
(1959), and an excellent treatment of high frequency diffraction methods in general
may be found, for example, in a paper by Logan and Yee (1962).
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jz 1 + o%,/ 2 em + k(r+ 3 +

02ka coo3 2(ka coos30)2

Sexp [,vn( " 3 f + exp liv (37r- + •(.3

+i3-n n 1-exp(i2r v 0

where
• •" a2  /i 3)

Ska + ei3 m an _ 3-en 1 n
/n n m 60 7oka 10)

_'3 -5 1 29n281 4+ . , 44)

+e m 12600-' 9 (4.44)

riz a-2 59a2 L 23 3  +.
Dn Ai'l(-& +e m T +e0 12600 +30ka)2 (3- 18 "

(4.45)

and the a 's (n = 1, 2...) are the zeros of the Airy Integral in Miller's notationn

(with a change in sign):

Ai(-an) = 0 . (4.46)

The first few values of a and Ai'(-a ) are given in Table 1I (Logan and Yee, 1962).n n

The first group of terms in (4.43) represents the optics contribution to the surface

current, and the first term itself is the geometrical optics current; this development

is numerically useful only if ka cos 3 »> 1. The summation over n represents the

creeping wave contribution to the surface field.
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TABLE 11

1 2. 33810 74104 59767 +0.70121 08227 20691

2 4.08794 94441 30971 -0.80311 13696 54864

3 5.52055 9828095551 +0.86520 40258 94152

4 6.7867080900 71759 -0.91085 0737049602

5 7.94413 35871 20853 +0. 94733 570M4 41568

The current density on the shadowed portion uf the surface (p = a,

10 rl < w/2) is given by (Franz and Galle, 1955):

,Irj z = (H I + He. i ýe e 3 - -1

1 - exp(i2 7r )nn

where v and D are given by (4.44) and (4.45). The creeping wave series (4.47)n n

is no longer useful for computational purposes when one approaches the shadow boun-

dary C = +_ w/2.

An alternative representation of the surface current, which is especially use-

ful in those angular regions where (4.43) and (4.47) fail to converge rapidly has

been derived by Goriainov (1958). An expansion which may be profitably employed

in the transition region about the shadow boundary

V rI- m-' - (4.48)

is the following:
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(H +H') ) iIm 'I n,-71 o()(m)ne i 1+(0)(mO ,) e

z -1=0

(4.49)

where

n, 3!E - 0•, -. (4.50)
(0 ()11)-

The Fock function f(0) () is a particular case of the more general function f(l) (),

defined as (see, for example, Logan (1959), vol. 1):

I e elt' tdt , (-OD< 9< a)) ,(4.51)

filij = w l(t)
r

where

w 1(W = Fr [Bi(x) +i Ai(xý (4.52)

2

with Ai and Bi Airy integrals in Miller's notation (1946), and r is a contour which

starts at infinity in the sector 7r/3 < argt < 7r, passes between the origin and the

pole of the integrand nearest the origin, and then ends at infinity in the sector

-7/3 <argt <7r/3. For 9'> 0, one can write f(u)(9) as a residue series:

-1(2+ 71)6 (n) gane 6
f(l)(1) = e 6 A n e n4.53)

n n

Values of fm (9) are given by Logan (1959, vol. 2) for 1 =-1(1)5 and

= 0. 5(0.1)4. 0.

The values tabulate!P by Logan correspond to our Eq. (4.53); in the headings of his
tables, a factor (-1) Is missing.
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If, in the first approximation, we limit ourselves to the first term (1 = 0) in

he series (4.49), we find that, after some manipulation (see Goriainov, 1958) we may

write:

jz i -m- )(mo ikal 0 kacos(r-z C-1Am,~ + F (incos(r - 0)) eia0 ( •

(0 7r < /2), (4.54)

where

3

F(Q) = f(0) () e 3 (4.55)

Formula (4.54) provides a smooth transition between (4.49) and the geometrical op-

tics result.

At large distances from the cylinder surface (p >> a), the incidc . wave (4.421

produces the scattered field (Franz and Galle, 1955):

a Ea sasin') 1 -1 31 +
-2"pcos2e+ 8kp 16kacos.22

+ i + 15 33 + 5+.7]s 512(ka cos~ 32(ka cos 2  4(ka cos'
2kacos 2 2 2 2

+m(wkp1/2 exp[(icpn(?r)]+ + exp [ivn~+)+x~ ( 7r -i+ m(2w.ko)" / exp [i (kpo + .-.L nC _epi.. n

12Cn 1- exp(12 zv)

X 1+i~~+ n (4.56)

where
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-21 -" _il 3a 2

A-(Ai n(-a] +e 3 3 4-2 +a 3 4 -4 +
Cn 30 T -1400

) 281a2

+ 3 2( 29a 90 ) +.. (4.57)

and v n is given by (4.44)*. The first group of terms in (4.56) represents the optics

contribution to the far field, and the first term itself is the geometrical optics field;

this development is numericaUy useful only if ka cos (3/2)>> 1. The summation over

n represents the creeping wave contribution to the far scattered field, and is prac--1
tically applicable only for 0 - •r I m . In the far field (p --+ co) and in the back

scattering direction (0 = 0), equation (4. 56) becomes (see (2.67), in which f(A0, 0) is

now PE):

Esz " PE 2 eik 4 (4.58)

where

1 i-• -1i2ka( 51 127 N i 1 6 _5__

P V 7---Z re 4 +-+ 1 27 . me 6 n
PE -2 e1 2 2. +sin(lrv)E lka 51 2(ka)a

(4.59)

In the far field (p -) o) and in the angular region 10 - 7r I << m , the domi-

nant contribution to the scattered field may be written in the form (4.58) with PE

given by (Goriainov, 1958):

The quantity CI of Franz and Galle (1955), given in their formula (ý17f), contains
an error: the factor 3,X6 in the denominator must be replaced by 6
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P sin [ka( - 7rii -M rIi [p (m0o- r)) e ika(0 -70+ p (minr - eJ ka(7 -)]E 7fr 
(4,60)

where

- -1 + exp(i~t) V(t) dt (4.61)

w2(77 (4.61)

-1
with w1 given by (4.52) and

1 2 1  -i C we(t)
v(9) = 2- / e 4 exp(it) w- dt . (4.62)

The reflection coefficient function p(g) is tabulated in Logan (1959, vol. 2) for

-1.60(0.01)1.60, and for 9 = -3.0(0.1)2.0.

In the particular case of forward scattering (0 = 7r), a more refined approxi-

mation has been derived by Wu (1956); the forward scattered field is still given by

(4.58) with
1 ir-l+ 1• 13 \ -3 1 (2 +281 N-

P %,-ka-M i--- Mm + '1+- M m - 29M.+-M - +
E o 30 1 140 \l10 2) 12600 o 90 3

+ 1 (7361M + -M I 7 +... (4.63)
5821200 1 360 4)

where
S~2wj i 2

M = 1.2550 7437 e MI =0.5322 503 6 e

M2 = 0.0935216, M = 0. 772793 e

27r

M4 = 1.0992 e . (4.64)
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It is easily seen that for =r.. formula (4.60) coincides with the first two terms of

the expansion (4.63). The total scattering cross section follows immecalately from

(4.63) and from the forward scattering theorem (2.69); the explicit result is given in

Section 4.5.

The previous treatment from (4.42) to (4.64) contains the most relevant re-

sults for the case of E-polarization. We shall now investigate the case of H-polari-

zation (hard cylinder), namely, of a plane electromagnetic wave incident in the direc-

tion of the negative x-axis, such that

Ei _•••eikx Hi A -ikx
E= 4e , H e= ie ; (4.65)-- y -- z

(notice that all results from (4.65) to the end of this section are normalized with

respect to the incident magnetic field).

The current density on the illuminated portion of the surface (p = a,

l< ir/2) is given by (Franz and Galle, 1955):

i -ikacos' l i l+3sin2A +
J = -(H z +11 ,, -2e 3 - 32 +

Z z pa 2kacos (kae os3)

S exp Vn - VT
a(2- + exp; i+ •n]

+nT n (4.66)

where

- 3 "3 1 1 n-3+
v',,ka+e m3 -e + L3 +44

n a 10Mn

"- 3 -5 1 -5 2 n+ +.. (4.67)
-e m 2000 (Pn 2 63 2268
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3 - 2 +F!) + 3 -4 1 p,4, 612n,- +
D nAi(AI -e I 02 30 2 0 0 6 n n 3

3

k) - - - + 500A3 - 7 + +So
3 ) (4.68)

and the (n 's (n - 1, 2,...) are the zeros of the derivative of the Airy integral in

Miller's notation (with a change in sign):

Ai'(-O ) = 0 . (4.69)

The first few values of jn and Ai(-Pn) are given in Table III (Logan and Yee, 1962).

TABLE III

1 1.01879 29716 47471 +0.53565 66560 15700

2 3.24819 75821 79837 -0.41901 54780 32564

3 4.82009 92111 78736 +0.38040 64686 28153

4 6.16330 73556 39487 -0.35790 79437 12292

5 7.37217 72550 47770 +0.34230 12444 11624

The first group of terms in (4.66) represents the optics contribution to the surface

current, and the first term itself is the geometrical optics current; this development

is numerically useful only if ka cos3 >> 1. The summation over n represents the

creeping wave contribution to the surface field.

The current density on the shadowed portion of the surface (p = a,

10" 7rI < r/2) is given by (Franz and Galle, 1955):

- 3 rI( H8exp [i'n (0 - -2Z A + 2xI: in(• - 0)b

0 n

• ~~128 ...



THE UNIVERSITY OF MICHIGAN
7133-3-T

where v nand D are given by (4.67) and (4.68). The creeping wave series (4. 70) isn n

no longer useful for computational purposes when one approachos the shadow boun-

dary C = _+ /2.

An alternative representation of the surface current, which is especially use-

ful in those angular regions where (4.66) and (4.70) fail to converge rapidly, has been

derived by Goriainov (1958). An expansion which may be profitably employed in the

transition region about the shadow boundary

z~l I '<_ m- (4.71)

is the following:

J = -(Hi + Hs g(O)(mre) I +glO) - , (4.72)
z z p=a 1 -0 1.

I(0)

where n, and n are given by equations (4.50). The Fock function g(0C) is a par-

ticular case of the more general function g(C)( defined as (see, for example,

Logan (1959), vol. 1):

gl)(C) e Iwt dt (-o < <+co) (4.73)

where w, (t) is the derivative of wl(t) given by (4.52), and r is the contour pre-

viously defined for (4.51). For 9 > 0, one can write g (() as a residue series:

57'

if -1 e i6

n n

Values of g (1)Q) are tabulated by Logan (1959, vol. 2) for I = -5(1)5 and

C= 0.5(0.l)8. 0. *

* The values tabulated b. Logan correspond to our equation (4.74); in the headings of

the tables, a factor (-1) is missing.
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"IIf, in the first approximation, w• limit ourselves to the first term (I - 0) in

the series (4.72), we find that after some manipulation (see Goriainov, 1958) we may

write:

,, g-(O) (mn-o0)e ika-r°-OG(In,:os(T'-0)') e ikcoo (w-•) 0) (0.<O).< /2), (.75r)

where 3

(0) 13
G() = g ()e (4.76)

Formula (4.75) provides a smooth transition between (4.72) and the geometrical op-

tics result.

At large distances from the cylinder surface (p »> a), the incident wave

(4.65) produces the scattered field (Franz and Galle, 1955):

s a •k(P - 2a cos 1) ~ (2ka sin ) 2 -K 3
]:2p 2 ekp 6ka coso

2

i 15 33 7 +

2ka cos3  512 (ka cob~) 32 (ka Cos2) 4 (kacoa3)2

-1/2~ ~~~~~~~~~ Ii(~'* ii: ep;r+]ep ;(7r-~
+ m(27r kP) -12expL exp2/ [V l+- ý+expw I,

-2_
B +i n (4.77)

where
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-2 (!n 1 -4 3-+e3Ai(I + m 30 1 e m 2C)(7]) ) +

15 ka 1K 1 61 1 281 3
1260 (4.78)

25(k&)2 153 1260 -11340

and v is given by equation (4.67). The first group of terms in (4.77) represents the
n

optics contribution to the far field, : *he first term itself is the geometrical optics

field; this development is numerically useful only if ka cos 3(r/2) )> 1. The summa-

tion over n represents the creeping wave contribution to the far scattered field, and

is practically applicable only for I - r I > m" . In the far field (p -+ co) and in the

back scattering direction (• = 0), equation (4.77) becomes:

HekP-i 4 (4.79)
Iz H• PII o •p

where

P f~ k e +.. + -mn0

H 2 16ka 512(ka) 2 2 n sin(Trin

(4.80)

In the far field (p-4- co) and in the angular region I•-rl << m-1, the domi-

nant contribution to the scattered field may be written in the form (4.79) with PH

given by (Goriainov, 1958):

sin -ka(O-ir3 ] -1m q (m(,-w)) eika(- 7r} 
q(m(ft-O)) eika(- 0]

(4 81N

where
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i

q(Q) +t (4.82)

with v and w, given by (4.62) and (4.52). respectively. The reflection coefficient

function q(j) is tabulated in logan (1959, vol. 2) for f - -2.00(0.00)2.00, and for

- -3.0(0.1)3.0.

In the particular case of forward scattering (0 - r). a more refined approxi-

mation has been derived by Wu (1956); the forward scattered field is still given by

(4. 79) with

1(i 81oM3 61 -_0 1 3_3 +1,)

56299-MI 167/9- 7/ ? 7 • '-7

P -- M +-M -- +- -M i- m+.L. (4.83)

31185 0 7 M-2 75 M-5 0 40M-4 4" 28

where

/2w
I- -0. 93486491e

M3 120o1

2 0 3

j_! 2w
FAM- = -10888416 198 e 3 F --M_ = -0.15"9346491 e

-- -i-
3

-M_= 2 .59 4 - -0 .120701906 e 3 -= -0 . 06757663 e

27rr

M-8 = -1.315741e M-2 = -3.70409389 e
4 -2

3M -3=0.41682138 e M4-3.17579652

21
3 - 13

M5 = 2.55965945 +3.12247506 e M_ 6 = 2.06575721 e

_iJ

M4- = -1.36515171 - 2.94764528 e 3 (4.84)
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It is easily seen that for • . •, formula (4.81) coinciders with the first two terms of

the expansion (4.83)*. The total scattering cross section follows at once from (4.83)

and from the forward scattering theorem; the explicit result is given in Section 4.5.

4.4 Impedance Boundary Conditions

Some considerations on the case of impedance boundary conditions have al-

ready been developed in Sections 4.2 and 4.3 (see, for example, Table I in Section

4.2 and the discussion on line sources in Section 4.3). Most authors limit their con-

sideratins to the scattering cross section (Lax and Feshbach, 1948; Rubinow and

Keller, 1961; Sharples, 1962'. An asymptotic evaluation of the reflected field for

plane wave incidence can be found in Keller et al (1956).

The far back scattered field, produced by a plane wave at normal incidence

with the electric field parallel to the cylinder axis, may be obtained ap a particular

case of the results given by Uslenghi (1964). If the incident field is such that

Ei = e1 , (4.85)
- Z

and the impedance boundary condition (2. 4) is valid, where Z - Wi is the surface

impedance, then the far back scattered field may be written in the form

Eb. a. 2 elkp - - ) 1.
bE .F +2L- _ n A ,] (4.86)Z • 0+2n=1

with the coefficient X (n-0, 1,2,...) given by the first of relations (2.36). Treat-
n

ing the summation over n as a residue series, the summation is replaced by a con-

tour integral C in the complex v plane taken in the clockwise direction around the

poles at vi 1, 2, ... ; following a Watson transformation, the contour C is then de-

formed to include the poles of the integrand which lie in the first quadrant (see Fig.

2-3). Thus, the far back scattered field is obtained as a sum of two contributions:

The diagram of I(0) in Fig. 3 of Goriainov (1958) appears to be incorrect.
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Eb.a. (4.87)
"z z ref. z ocr.w.

the reflected field arises from an asymptotic evaluation of the term containing A in0

(4.86) and from a saddle point evaluation of the line integral, whereas the creeping

wave field is represented by the residue series due to the complex poles of the inte-

grand. One finds that

(Eb.s) n e{ikp- 2k + L1.- 2n-2n2]j (4.88)

The leading term in (4.88) is the geometrical optics field; the "reflection coefficient"

is given by (rI- 1)/(n +1) and becomes (-1) for a perfectly conducting cylinder (n = 0).

The case in which the relative surface impedance is close to unity is of considerable

interest in applications to absorbers; for rY = 1, formula (4.88) becomes:

(Eb F e --k_- i2ka(E) 31 b. (4.89)z refl. P - eka- -= 8- (z g.o.

The creeping wave contribution is given by

31r - 1
b. s. - -1 4e 2 (-2 tn"(E )or.w. "2yý27 e a Ein(7rVn)W (tn) 7+ )

(4.90)

where wI is given by (4.52),

v a ka+mt n m = (ka/2)I/3 , (4.91)nl n

and the tn's are the roots of the equation

w 1(t)jw im(1 (4.92)wtn)
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which may be obtained from the values -,f wl (t)/w 1 (t) that were computed by Logan

and Yee (1962) when t lies in the first quadrant. A similar analysis of the far back

scattered field may be carried out for the H-polarization.

An approximate expression of the forward scattered field (and of the total

scattering cross section) has been found by Sharples (1962) who used an extended

form of the Kirchhoff-Fresnel theory of diffraction, and arrived at numerical results

for values of the relative surface impedance either large or small compared to unity.

The method of Sharples is an extension of a previous work on soft cylinders by Jones

and Whitham (1957), and leads to more accurate results than the variational tech-

nique developed by Kodis (1958).

The quantities v of (4.91), and the corresponding quantities for the H-polar-

ization, are the roots of the equation

1(1)' 
= -1, for E-polarization,

V V == , for H-polarization(

which have a positive imaginary part; in the particular case 17 = 0, the v 's are

given by the asymptotic expansions (4.44) and (4.67) of Section 4.3. The roots of

equation (4.93) have been studied in detail by Streifer (1964), for the two cases in
which 9 = 0(m-2 ) and E 90(1). If we indicate with a and > the opposites of the

n n

roots of Ai and Ai', which are given in Tables II and M of Section 4.3, then

(Streifer, 1964):

ir 2 3I--'3-I n I /

vA ka+e 3ma -e 3- i n1 -L9.
n n T 6 TOka 10/

1e 3 anm 2 _.72-2(I_9-2 "3 1....3 _9-4)X
ei39 _•- )- Ie- 1892

2a m-4 +O(m-5 for > 0(l)

n (4.94)
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[Iwhereas:
I+ m-l +1 n +-+-1

Vn- a+e n 10 (on 625- 43n+28) +

4n

2 7r"

+_fe 3A-I -1_ -3 m+a e1 + _- g3eI
1n a-1- 2

(3n On

- -C e 1 3 ("1_ 3 )1 , -. 3 (74 In 5
10 2 25)in 4 2 7-Jm

On on n g

i X 41gn -1-
2- m 3 2 1 3 -213 3
20 2 126 i5 1 2 e n

11 +7 1 n 2_5( 1- 21+ 7) m6 +O(in 5 )

for • ) O(m-2(. (4.95)

If the radius of the cylinder is very large compared to the wavelength, then only the

first creeping wave, corresponding to that root v 1 of either (4.94) or (4.95) which

has the smallest imaginary part (hereafter ::alled the "first root"), gives a sizeable

contribution to the scattered field. The position of the forst root v1 in the complex

v-plane is indicated in Fig. 4-4 for 9 = 0, 1, and infinity, and for various values of

ka. The position of v 1 for two fixed values of ka and for 9 varying from zero to

Infinity iB plotted in Fig. 4-5. Finally, values of I for different values of ka and

S= 1 a.re given in Table IV (Streifer, 1964); these values are in good agreement with

those obtained by Weston (1963).
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10 20 Rev 40 60 80 100

FIG. 4-4: THE FIRST ROOT v OF (4.93) FOR THREE VALUES OF g
AND VARIOUS VALES OF x = ka (Streifer, 1964).
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TABLE IV
(1)'(1

The First Root u of H (ka) + iH (1)(ka) = 0. (Strelfer, 1964).
1 / V

4 1.051 +11.300 14 1.118 + 11.542

5 1.064+il.355 16 1.123+11.561
6 1.075 +il.394 18 1.128 +il.578
7 1.084+1il.425 20 1.131 + il.592
8 1.092 + il.450 30 1.142 + 1l. 643
9 1.098 + il.471 40 1.148+ 1.675

10 1.103 + 11.489 50 1.151 + 1.699
12 1.112 + 11.518

4.5 Radar Cross Sections

In this section, we shall state the principal results on high frequency back

scattering and total scattering cross sections for a perfectly conducting cylinder, and

mention briefly the various techniques which have been used in the case of impedance

boundary conditions.

The geometrical optics approximat.on to the back scattering cross section

per unit length of the cylinder is given by

ao = 7ra, (4.96)g.o.

and is the same for both polarizations. The agreement of (4.9C' with the exact re-

sults is excellent even for relatively small ka in the case of E-polarization (see

Fig. 2-10), whereas it is unsatisfactory for H-polarization (see Fig. 2-11). A more

refined approximation to the back scattering cross section is obtained by computing

the far back scattered field with the aid of the formulas given in Sections 4.3 and

4.4.*

The formulas of Section 4.3 may be used to compute the bistatic cross section.
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For many practical purposes, it is sufficient to determine only certain aver-

age characteristics of the scatterer, such as, for example, the total scattering cross

section. According to the forward scattering theorem of formula (2.69), which holds

for both polarizations, atotal can be easily derived from the forward scattered field.

Thus, in the case of the E-polarization, it follows from (4.63) that (Wu, 1956):

r23-2 /)-/3_ 85(a-2

(a'total)E ,. 4a I. + O. 49807659(ka) - 0.01117656(ka) -/3 0.01468652(ka) +

+ 0. 00488945(ka)-8/3+ 0.00179345(ka)'10/3 +. ..1 , (4.97)

whereas for the H-polarization, it follows from (4.83) that (Wu, 1956):

(•total)S ~ 4H a F - 0.43211998(ka)-2/3 _ 0.21371236(ka)"4/3 + 0. 0573255(ka)-2-

- 0. 00055534(ka)-8/3 + 0. 02324932(ka)- 10/3 +.] . (4.98)

In particular, the geometrical optics atotal is given by

(a total)g. . = 4a , (4.99)

for both polarizations. The total scattering cross section, normalized to its geomet-

rical optics value (4.99), is shown in Fig. 4-6 for E-polarization and in Fig. 4-7 for

H-polarization. In both figures, the exact value computed from the exact series solu

tion (such as (2.71) for E-polarization) is shown in full line; the approximate values

given by the first few terms of (4.97) and (4.98) are shown in broken lines. It is

seen that the first three terms of (4.97) give an excellent approximation to the exact

value of "total for all ka >, 1, whereas in the case of (4.98), the first three terms

represent a. good approximation for all ka >,4.

The technique employed by Wu (1956) to arrive at (4.97) and (4.98) allows us

to find any finite number of terms in the asymptotic series. It consists in solving
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1 .5 .-

1.4

1.3

1.2

2 1.1"

- .Exact and (II)

1.0-

0 4 8 ka 12 16 20

FIG. 4-6: NORMALIZED TOTAL SCATTERIN4G CROSS SECTION cr ok/(4a)
AS A FUNCTION OF ka, FOR ELECTRIC FIELD PARAL'EL
TO AXIS; (1) GEOMETRICAL OPTICS WITH ONE CORRECTION
TERM, (IH) GEOMETRICAL OPTICS WITH TWO CORRECTION
TERMS. (King and Wu, 1959)
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1.0

0. Q)

,I I
S0.6 i

0.5 I

0 4 8 ka 12 16 20

FIG. 4-7: NORMALIZED TOTAL SCATTERING CROSS SECTION
a /(4a) AS A FUNCTION OF kg, FOR MAGNETIC

MS PARALLEL TO AXIS; (I) GEOMETRICAL OPTICS
WITH ONE CORRECTION TERM, (II) GEOMETRICAL
OPTICS WITH TWO CORRECTION TERMS. (King and Wu,
1959)
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the reduced wave equation in the region outside the cylinder by considering this re-

gion as a Riemann surface with infinitely many sheets; this procedure is essentially

different from that given by Franz and Deppermann (1952). A different approach to

obtain (4.97) and (4.98) has been developed by Beckmann and Franz (1957).

Before the 1956 paper by Wu, various attempts were made to obtain a high

frequency expansion for atotal. following essentially two different ways. Wu and

Rubinow (1955) performed very extensive transformations on the exact series solu-

tion for the forward scattered field, and succeeded in determining the first correc-

tion term to geometrical optics for both polarizations; their method was, however,

too cumbersome to permit the dete'mination of higher-order terms. An entirely dif-

ferent approach was adopted by Papas (1950), who used the variational method of

Levine and Schwinger. For example, for the E-polarization, Papas finds that

-1/2

a 4a11 4A) (4.100)
'total L a )k'

although the leading term of this formula has the correct value 4a, the higher order

terms are incorrect. Subsequent works by Wetzel (1957) and Kodis (1958) proved

that it is very difficult for the variational method to provide even the first correction

term to geometrical optics. Kodis, for example, finds that

('total)E I 4a j+ 0.746(kay2/] 1 (4.101)

and it is seen by comparison with (4.97) that the numerical coefficient of the second

term of (4. 101) is in error by about 30 percent.

Finally, we mention a few works on the determination of 'total for a cylinder

with impedance boundary conditions. The phase shift analysis procedure which was

described in Section 2.2 permits to calculate the approximate high frequency cross

section; however, Lax and Feshbach (1948) give explicit results only for the sphere.

The determination of the scattering cross section (and of the shift of the shadow
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boundary) for a cylinder with impedance boundary conditions was performed by

Rubinow and Keller (1961), who also extended their results to any smooth two- or

three-dimensional object. A different approximation method was developed by Shar-

plea in 1962 (see remarks in Section 4.4).
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V
SCATTERING FROM A SEMI-INFINITE CYLINDER

This section is devotcd to the scattering of electromagnetic and acoustic

waves by a semi-infinite cylinder of circular cross section. Both a thin-walled tube

and a solid cylinder are considered. The boundary conditions are '-= = 0 (rigid

cylinder) or u = 0 (soft cylinder) for the scalar case and it is assumed that the cyl-

inder is perfectly conducting in the electromagnetic case. When the scattering body

is a thin-walled semi-infinite tube the sources -an be located either inside or outside

the tube. In the former case we assume, the solution of the corresponding infinite

wavegulde problem to be known. That is, th( amplitude and phase of all modes are

known at the point corresponding to the end of the tube.

The semi-infinite cylinder problems are solved by employing the method of

Weiner and Hopf (1931) for treatment of integral equations in the interval (0, cI).

However, the calculations will be somewhat more straightforward if one does not

formulate the problem as an integral equation but instead takes the Fourier transform

of all quantities before applying the boundary conditions. This approach has been

used by Wainstein (1949) and Jones (1952), among others.

To illustrate the method we will treat the problem of electromagne tc scatter-

ing from a semi-infinite rod (i.e. a solid cylinder with a plane end sturface). The

corresponding scalar problem for plane wave incidence has been treated by Jones

(1955) and as in that case the final expressions contain the solution for the semi-

infinite thin-walled tube plus additional terms which make the solution fulfill the boun

dary condition on the end surface. These additional terms are not expressed expli-

citly but only given as the solution of an infinite system of linear equations. Contrar

to the infinite cylinder case, the solution of the electromagnetic scattering problem

for the solid or tube-shaped semi-infinite cylinder cannot be constructed from the

scalar problems with boundary conditions u = 0 and L = 0 respectively by taking the

incident scalar waves as the component along the cylinder axis of the incident electric
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and magnetic field. The scattering field due to an incident TE field, for example,

consists of both a TE and a TM part.

5.1 Electromaimetic Scatterin from a Perfectl, Conducting Semi-Infinite Solid
Cylinder

Let (p. 0, z) be cylindrical coordinates as in Fig. 2-1 and let the semi-infinite

circular cylinder occupy the space p< a, z > 0. As before, the time dependence
-Iwt

e will be suppressed throughout.

We write the total electromagnetic fields as

E =Et+Es (5.1)

H = Hi+ H

where Ei and H- denote the incident field (the field obtained if the rod were absent).

The scattered fields Es and He satisfy the Helmholtz equations

(V2 + k2)Es = 0 (5.3)

(V2 + k2)Hs = 0 (5.4)

outside the rod (k = w f = 27/0) and the following -dditional conditions:

(i) E = -E , Es =-E ip=a, z>
0Z Z

Es =E Es =-E p<a, z =0
P P 0 0

(1i) 18, He satisfy a radiation condition at infinity

(iii) E'(a, 0o z) ,- O(z- ) , EB(a, , z) , O(z 2/3

H 8(a, Z)o z,, O(z -1/3) H 8(a. o. z),- 0(l)

as z -- -0 where 00 is an arbitrary fixed angle.
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Condition (iii) is the edge condition, necessary to ensure uniqueness of the solution

(Bouwkamp, 1946; Metxner, 1949; Heins and Silver, 1955; Van Bladel, 1964).

We assume temporarily that k= kr+iki (kr >0, ki >0) and allow ki - 0 in

the final results. This assumption is equivalent to introducing losses in the surround-

ing medium and consequently the Fourier transform of all field quantities related to

the (outgoing) scattered wave will exist in the ordinary sense. We expand all field

components in a Fourier series with respect to 0 and take the Fourier transform witt

respect to z. Thus, for example

z(P.a) = 1 Ez, •,0z)e-i(az+n0) dodz (5.5)

from which the original field is obtained as

E Oz -1 icZ

E z =2 eino (p, a) e cizda . (5.6)z znnk=-cO -'- D

If we associate i imaginary part to k it follows that the fields are exponentially

decreasing as Iz -- co and that their Fourier transforms are analytic functions of a

in the strip -ki < Ima < k..

Let F(z) be a function, exponentially decreasing as I z I-- a), and 7(a) its

Fourier transform. We introduce the following notations

F*(z) = F(z), z >0

L0 , z<O

FWz, z < 0

noting the Fourier transform of F+(z) and F-(z) by ý'+(a) and 3(a) respectively,

we have
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+ 1,' , (5.7)

- 2,-' (5.8)

2iri J'y- a
-(OD

where the path of integration passes above the pole y = a in (5.7) and below it in

(5.8). Equations (5.7) and (5.8) are easily obtained from application of the Cauchy

integral formula to 7'(a) in its strip of analyticity. ?'(a) is analytic in the lower

half-plane (Ima < 0) and r'(a) in the upper one.

The z-component of (5.3) in cylindrical coordinates reads

s 2Es 2.
_ z 1 -A +  z + k2E a = 0 (5.9)

P2 +s -2 -2 z

and the same equation is valid for Ha. The corresponding equation for 6' and Xs
z zn Zn

is

a'PP (P a'P. a:~,)

P)+k2 - - =0. (5.10)

This is Bessel's differential equation and the solution valid for p > a and satisfying

the radiation condition is

en =.n) 2 ' p >a (5.11

H(1)

X :(P.') =-- (aa) p1) a> p>a (5.12

n
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The solution for the region p < a, z < 0 satisfying the boundary conditions on the

plane end surface can be obtained by use of images. We use the superscript I to

denote quantities related to the field in this region and define

I- - I I- , n p[
I!n(p, a)+- (p.a)=Le. -&) tnn(-,a (5.13)

a n (n 7k-n)

p <a

•zn(p°'I"a)- •z-(p, -a) = ( a) 'a, ) n, (51
Zznp a) zn zn zn (5.a

p<a

The fields obtained by inserting these £zn and V,, in (5.6) are the total fields in the

region p < a, z < 0 if there is no source of the incident fields in p < a. If there are

sources for p < a we have to add the incident field plus its reflection by a perfectly

conditing infinite plane at z = 0 to obtain the total field. Thus, for p < a,

SoreaIp<ar - 8- 1+'
Source atp P<a,0 z(P,ca) = . z(pa)- - ezan(P0.-a) (5.15

VeI- a- 1+ (.6
zn(p.a) = XzS(p, a)+Y zn(p. -a) (5.16

Source at p >a , p,a) = (p,)+ - (5.17

-(pa) = 8-1(p,a)+ n(pa) (5.18
znpo, Xzn~p,+ zn

where the + and - superscripts denote a division according to (5.7) and (5.8). That

the fields obtained from (5.13) and (5.14) satisfy the boundary condition for z = 0

follows from the fact that the pertinent Eo and E are both odd coatinuous functions

of z and thus vanish at z = 0.
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SIf Ez and H z are know n for p = a, -ao < z < c , they can be obtained every-

where from equations (5.11) - (5.14). The remaining field components can then be

derived from Maxwell's equations. As a special case we obtain the following equa-

tions between the field components at p = a:

(1)
nan a) ea, aa-n n(a.)+ (5.19

= (1)'(x U'c a a ý

•€HH1(ax)xn

iCH(1)'1aK
n0 (Xa)+I)
zn( H( Iz(a , ) = Iz-n(a , a) (5.20)

n

T, T. IJ (ax [I- (_.

X~(a~a) - J_ a, --a) n a, ctJ'(-xe.L(a,

zn~~~K (ax) j(ac)P

n

( ebrn w pan spi a)+ it 0)an H(51)

na

e~)= a ( )aaaa)(5.23

h((a) = c2a2 (a (a, a) +an-aa,) . (5. 24n
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For the incident field we have

i H(1)la•)
tin(a.a)i= n(a5

zn wp a 2H(1)'(aK) e(.5
n

iwC a 2H(1), (aK)hn(a) = (1) • (a, a) (5.26)n

if the source is at p <a, and

iJ (ax)
in(aa) = 2 e (a) (5.27)

w(• a Jn(ax)n

hi ()--= nLE~ - •i(z c (5.28)
n J (ax) zn~a

n

if the same source is at p0 >a. Combining (5.19) - (5.28) and using the fact that

d n(aa) e- (a. a) - 0 (total field) we obtain

zn gn

n (5.29)
; H(nl)(aic) Jn(at) c~ na ) J •.z (ax)•

hk(a.)-h-(-a) = i-a I(H(W)(ac) - (ea W-e (aa)
zn zn 2 ) J (aic zn zn J1ai)

n

J(5.29)

- J (ax)Ja Zn) (a, a) - (5.30)
ii J

here all quantities except e(a) and n are related tote total fields. Equations

n
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(5.29) and (5.30) are valid if the source of the incident field is at p > a. If the

source i at p < a the corresponding relations are obtained by replacing e (a) by

*a (a)-e n(-a) in (5.29) and 6 zn(a) by f.zn(a)+ dzn(-a) in (5.30).
Employing the Wronskian we can write

H(1)l(ar) J n(ar.) -21.(1)' (5.31)H (all) 7 axeJnllH(c)

n n -•2
na n)21 (5.31)

H()l(a)l Jn(ax) ='rcJl(arlH(1)(asc)a n n

We now perform a factorization such that

Ln)Ll-) = iJ) aJlH(lla) (5.33)

M (aK) (5.34)

n n n n

Wehnowepefor m a >actoiLat(a)ond suc th(at r nltc aen eo n eaea

0(1a as ja- w. e dfn

aLn(a) = L (ac)) (5.35)

Mn(a) M Mn(a) (5.36n

M (a) -- ) • (5.37)

Further detais about the functions L and M a are given in Section 5.6. Equations

-n n

(5.29) and (5.30) can now be rewritten as
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+~ Wt

( a c + - a,-) M (-a) - F+(a) + - 2 e(
(' ( z n D fn a 2 Wk(k-a)M (k)

2e(a) en(k)
2 n + F.(a)-fa) (5.38)

a2K2M (a) a 2k(k - a)Mk) W f

h: )- h(-&) -Gi)+g( *h(-k) - h-ik)
n +2( ()- ) h (-) -h ( -k) - Lk)

______ nt L L)(k)
tx(k+a)a 2  ft fti .2 k+)a2

a=ka)n(a - ft L L(k) + Ga) -g g(a) (.9

alk +a)na) WE.-k+laaft t

where

SaJ'(a)n n - - a) (5.40

ICJ' (aK)L (-a)

a) (k +=k)Jn(ai) Z(5.41

and
e t (a), source at p > a

i(a) = . (0) (5.42

a K Mfn(a) ei (a)- ei(-a) source at po < a

in(aa) , source at p >a

2 (5 43)
gii) = a(k+a)Ln(a) i(a a)+ i(a-a), source at po<a

153



THE UNIVERSITY OF MICHIGAN
i 7133-3-T

The left hand side in (5.38) and (5.39) is analytic w.ien Ima < k and the right hand
side is analytic when Ima > -k1 . They consequently represent a function analytic in

the whole a-plane. The behavior of the Fourier transforms of the field components
when aI--* is given by the edge conditions and L (a) and Mn (a) are O(1/ V-) as

Ia I--# w. From this it can be concluded that both sides tend to zero at infinity and the

common analytic function is consequently identically zero. The constants enWk) and

h (-k)-h h (k) in (5.38) and (5.39) can be determined by putting a = -k in (5.38) and

a = k In (5.39) and using the relations e(k) = kna d'n(a, k) and
n zn

h'(-k)-h (k) = -kna •n(a,-k)+ (a, a,) obtained from (5.23) and (5.24). Per-
n n nZn'

forming this we end up with the following expressions:

aknL (k) 2a2
e_(a)= a(k+a)M (a) 4k[2kM-"-'-(()-W_-nG2()

£ 4k 2a 2M 2(Wk)n2 [2 k 2(k) n g( a -n n

" + + + a(k -a)

(5.44)

r__aknL (k)•zn(aa•) = Ln(a) 2 2 2Lnnk(g )-G ) _
zn L 4k2 a 2M 2(k)- L 2k) n n

n n

-2Mn(k)(f(-k)-F:(-k)5 ] + a(k+a)

(5.45)

Employing equations (5.8), (5.40) and (5.41) we obtain

F1 Jn (a -)Mn(-n) dy (5.46)
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G n(a) (k=Y J dy (.7

where the path of integration passes below the pole y -a.

Thus, equations (5.44) and (5.45) are in fact a system of integral equations.

The only singularities of the integrands in (5.46) and (5.47) in the lower half-plane

are simple poles and by completing the contour of integration by a large semi-circle

in the lower half-plane F(a) and G-(a) can be calculated by means of residues. We
n n

write
OD Anm+•

F_-() = (5.48)
IA m=l am

Gn ~

.a) a+•am (5.49)
m= nm

where
M (at )e_(a' j2

A 1 n nm nm am (5.50)
nm 2 atm(a2 _ ,2

m anm

L(a )j2  67(a, a
Bnm a m nm zn nm

a am(k -anm)
(5.51)

B L L(k)d (a, k)
no a a zn

and
J0 <j <...
n mun 

a
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2
a' - Irna' > 0

nm 2nlm
La

Sn (jnm) =0 0 = no < Jn1 < ...

n nmm

of2 anm Iz= >0

(we define j o = 0 although they are not zeros of Jo and J. )

Inserting a = a' and a = -a respectively in (5.44) and (5. 45) we obtain the fol-
nm nm

lowing infinite system of linear equations for the coefficients A and B :

aaO(n2 -j2)

akn Ln~k [Ln(k)( a'-k +f:(-k) - 2a2 k2 Mn(k)( :(k) - B)n mr0 0 a.

nL2 (k) (n+ 2a 2 k2 M2n(k)) - 4akM2(k)

"a(k- aý) A am f,.0,2 0,1,2,...

, urnm ,1,2,3,...

(5.52)
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The functions F (a) and G (a) affect only the boundary values on the planen n

end surface. E (a, z) and E (a, z) vanish for z >0 for every choice of F and G

In particular, by taking Gn(a) = F a(a) = 0, (5.44) and (5.45) express the solution for

a semi-infinite thin-walled tube. In this case, the f (a) and gn(a) are defined by the

upper alternatives in (5.42) and (5.43) regardless of the position of the source of the

incident field.

The field components at an arbitrary point can now be calculated as a summa-

tion over n = -c to o and an integration over a from -oD to cD of expressions

containing the quantities en(a) and 6- (a,a) of (5.44) and (5.45). We write
1 zn

X(p. 0o z) = Xi(p, •0 z) + - ei'n (.)H(1)(p,+B(t)H(I) (pK] ebzda
n=-c- (5.55)r

p>a, -ao<z<oD

where X stands for an arbitrary field component. The path of integration r is as

indicated in Fig. 5-1 after the imaginary part of k is put to zero. When p < a and

Ima

n nVY7o j(4Wi)-

-,w Re a

branch cut k R

FIG. 5-1: PATH OF INTEGRATION FOR THE INVERSE FOURIER TRANSFORM
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the source of the incident field is located at p > a we have

OD

X(p, 0, z) = 1" eino A()Jn(pi) + B(a)J I(pt zd (5.56)
n=-oD

p<a, -w<z<O

If the source is at p < a we write

OD C
X(p~, ,Z) X i(P,0, z) +Xr(P,0, z) +. 1 ~ifln M!J(i)+BoJ'p~ 0 ~

o=o

p <a, -co < z < O (5.57)

where Xr is the incident field reflected by a perfectly conducting infinite plane at

z = 0. The expressions for A(a) and B(a) in (5.55) - (5.57) are given in Table V.

The radiation far field can be obtained from (5.55) by estimating the integral

by the method of steepest descent. If we introduce spherical coordinates (r, 0, 0)

suchthat z=rcos0, p =rsinG we get

X(r,0,0) -• x lk I 7 ein0(_i)n[_iA(kcos8)+B(kcos08] (5.58)r 2ir
n=-CD

when kr--m# is krsin29 >> 1.

Equation (5.58) is obtained under the assumption that the source of the inci-

dent field is located at a finite distance. For plane wave incidence, the scattered

field in the region 0 < 00, where 0 is the angle between the direction of propagation

of the plane wave ane the positive z-axis, contains an additional part equal to the

field reflected by an infinite cylinder. A and B in (5.58) are still given by Table V

with b(a) and c(a) belonging to p > a. The terms containing p in the denominator

then contribute only to higher order terms and should be disregarded.
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TABLE V
Relation Between the Field Components and the Quantity X

of Equations (5.55) - (5.58)

x A(ci) B(a)

in igE - -W b(a) - c(a)p 32 K
pK a

E .0- c(a) 1 b(a)
pK x a

E c(a) 0
Z

H - c•a) - b(a)
PpK WO a

H• _ina3 b•) •k a)

wK a

3 2b(a) 0- e()• a

where b(H) = b(a ) 0 J
e~a)-e Ia _ n

H(1)'(a)
n

6-(,a (a,a) C(a. a) + 1 (a,-a)
c(a) = H( ')(-ea c(a) zn J (a )

Hl(axc) ~(
n

when p>a when p<a

K2 = 2_2.

,c k -a
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5.2 -Scatterin of a Scalar Plan. Wave by a Semi-Infinite Cylinder

The case when the cylinder is solid, i.e. a rod of circular cross section, has

been treated by Jones (1955) (of. also Matsui, 1960) for both the boundary condition

- - 0 and u =0. His results also contain in principle the solution for a thin-walled

tube and therefore we will not treat that case separately. Since the problem under

consideration can be treated in a way quite analogous to that given in the previous

section, the results will be given without derivation. As noted before, if the solution

to the electromagnetic scattering problem is known, uI W Hz and u2 = Ez do not yielc

the solution to the scalar problems with boundary conditions auI/Op = 0 and u2- 0

for the incident waves ul = Hz and u2= E respectively. The reason is that u1 and
1 z u2 z

u2 so constructed do not satisfy the correct edge condition at the open end of the tube.

This section contains essentially the results given in Jones' paper, written in

conformity with our earlier notations (time dependence e-•.

Let the cylinder occupy the space p < a, z > 0 and the incident plane wave be

given by

u(0) = exp(ikp sin 0 Cos I+ ikz cos 0) (5.59)

i.e., the angle between the direction of propagation and the positive z-axis is 0i.

5.2.1 The Boundary Condition 8u/8P = 0 when the Angle of Incidence is
Neither 0 Nor r

Let the total field be given by

u(0) + uI) + u(p, , z) in p > a

u(p,0,z) in p<a, z<0

0 in p<a, z>O

where
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1ikz co 0 nZ I(kasi)_
e =n e2 nlP' H(1)lkp san 0)e /no (5.60)

n.-co H (ka sin 0 n
n

is the field reflected by an infinite cylinder (cf. Eq. 2.34).

We have

Sn oeinoj (1) in=-D c a)(1,( H )(xo)ei da p >a

u(P, 0,z) = (5.61)

(a) a) mKJ() J(Kp) +' 2 ,2 e dA=-OD r n m=0 a a~
r pam

where

21nI' 2 _a ' (o
f nm n nm

=m act'(012 -n 2 )J (i' n m

216 P(k)
fo---- On P-- (6 0, nm;= ,n=m)
no Ak mm

and as before
2  k2 c2

J'(j' ) = 0=3' <j" <"". (we define j'I =0 althoughm10 f=no it is not a z40o of Ji)
J12

a' = 2_ 1- positive real or imaginary.nm a 2

The path of integration is given by Fig. 5-1 and passes above all poles of Pn(a).
The equation for Pn (a) is
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VIPn a)G 6on G0 9o 1  n anm (5.62)(c+k)M (a) a-kcoui " a+k m=1 0+ m 5.
n M= l

where

in+Ill -cosn i)M (-kcosO)
Gn sinO1H(')?(kasinO)

i n

and Mn (a) is the split function defined by (5.34). The constants anm are determine

by the following equations:

1 6oaoo z ._ anm _

ar a'-ko - on -0 a' + r=k,1,...
nr i nr m=1 nr nm

(5.63)

where

2a' ,2 2
at nrnr

nr r nr

1ai =

00 2kL2 (k)
1

The edge condition requires that a n , m-7/6 as m -- CD and we must alsonfl

have

COD

6 ona + a =1. (5.64)
m 1

The solution for a semi-infinite thin-walled tube is obtained by putting f = 0 in

(5.61) and a = 0 In (5.62) for all n and m. Inside the tube, i.e., p < a, z > 0,nnm
the integral in equation (5.61) can be calculated by residues. Thus,
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ka 4-OD m=l aa' (J2 -n 2)1 0J a)nm n-n-- a

p<a, z>O (5.65)

5.2.2 The Boundary Condition Ou/§e = 0 when the Angle of Incidence is 0

Here we take the incident wave to be e kz. The total field is assumed to be

eikz+ u in p<a

6 k+ eikz+1u in p<a, z<0

0 in p<a, z> .

The result is

1 . la H(l) (1O) iaz da p >a
2w H(l)'(a) 0

u(p, 0, z) = (5.66)

JomP iaz2JLCJ o(I() + o i2 e do, p<ar m=O a2_ a 12

where

2iP(po )
omhm I Z' J (j' ) m 0

nm 0 om

h =21P(k)
o ak

The equation for P(c) is

7 iP(a) 1-90 (5.67)

0o(a+k)Ll(a) = a+k - +

here = -7akL (k).
0 1
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The equations for the constants In are

0 m

-5 W7rk-Z at +at I r -opit..

a o r I' ý ý ro r m -1 o r o m(

5. 3 The Boundary Condition u =0

We assume the angle of incidence to be neither 0 nor r and write the total

field as

u(O)+ u(2)+ u(p, 0, z) in p ; a

u(p4 fZ) in p 4a, z4CO

0 in p<a, z :0

where u(0) is the incident wave given by (5.59) and

u eikz coo 0 ei 2 Jnl(ksin 0il"H(l)(kl si)ein( (5.69)

nm-cO H 1 (ka slin8

is the field reflected by an infinite cylinder (of Eq. 2.29). We obtain

1 eno Rn-(a Hi) (1) ida p > a
•"n=• "-(1)1. n

u(p, 0.z) = (5.p70)

OD~~ F~a) -2

1eino nm n(' aa- e iaz da,
21 7R(ra) JCY)of (am2

a=n m=1 a aIa
am

p <a

where
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2j nRn(anm)
5nm - m m

and as before

2 W k2 a 2

JnJnm) 0 0 <- na < n2 < ""

a = k- positive real or imaginary.
a2

The equation for R (a) becomesn

,rR (a') 'yn ______(571

L~a) = ~kcma1 a+amn (.1

where
(ilntn(-k cos 01_

Pnff ksin i(nl)(kasinO)
i n

and Ln(a) is defined by (5.33). The -ynm are determined from

2
-2aa , 1t nr_______
-2a2(of 1nr -kos0 - a+a nm ri 1,2,... (5.72)

nr n nr

We also have

Ynm -- O(m)-7/6 as m --

- 167



THE UNIVERSITY OF MICHIGAN
7133-3-T

and

a 'an . (5.73)

The solution for a semi-infinlte thin-walled tube can be obtained by putting g nm 0

In (5.70) and ynm - 0 In (5.71) for all n and m. Inside the tube the field can be ex-

pressed as

u(p . Z) - E 2 JRn( am n)Jn(inm Pa nmz (5.74)

n =-OD n1=1 a anJ1(J

p<a, z>0

5.2.4 The Far Field

For points at large distances from the origin the integrals in equations (5.61),

(5.66) and (5.70) may be evaluated by the method of steepest descent. The integrand

has a pole at a = kcos01 which for certain points of observation will be close to the

saddle point. To overcome this difficulty a method by Vander Waerden (1951) is

used. We introduce spherical coordinates (r,80, ) p = rsinO, z - rcos $ and follow-

Ing Bowman (1963b) we write the field in the far zone krsin20 >> 1 as

Slkr cos(8 - ei)

r i PC sin 0

1 ikr
"2s-gn(e')A(OlT(r0e- ,79 (5.-75)

where
OD1 (kPcoo ( )os

U(0, 0) = 10 (-+1 a- - in (5.76)
n=-CD ksin0H(1(kasin6)n
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A(O) = 4- J (ka-in9 e) (5.77)
nx. s-C• H (ka sin0)

when the boundary condition is au = 0 and

18 )o (_l)nl R (kcos0)
U(0o •) e 4 E Hnf(1)ka ne (5.78)

Sn=- (kainO)
n

when the boundary condition is u- =0. The total field is obtained as before by adding

the incident and reflected waves to u. The functions H(0 - 01) and sgn(0- 0) are the

Heaviside step function and the signum step function defined by

1, x >0 rl, x>0
H(x) = sgnx = (5.80)

The function T(r, 0- 0i) is given by

Tir,0-0i) = e erfcl -i) w -- (5.81)

where w sin !--' and the error function is defined by

erfc z = C e dt (5.82)

169



THE UNIVERSITY OF MICHIGAN
7133-3-T

The second term in (5. 75) removes the reflected wave P) and u(2) respec-

tively in the region 0 >0 The last term can be interpreted as a transition contribu-

tion which assures a continuous field across the shadow boundary 0 = 0 Thus it

compensates for both the jump in the reflected field and the singularity of the first

term at 0 = 0 For fixed 0 4 0 the transition term is asymptotically smaller than

te other two; in practice it can usually be neglected when w > 4.

For ka << 1 and the boundary condition u = 0 the only term in (5.70) which

must be considered is that for n = 0. For values of a such that IaaI «< 1 we can

write the equation for R (a), (5.71), as

r) R (a) e 1

0 1 7o i. e.

L) 'yo a-k~cos0 a+ a
0a (1 1 m=1 0m)

a-kcosO 1

-fL (a) e (5.83)

a 000

where m= 01m nd

the case of a tube -shaped cylinder. Near the saddle point we have Iaa << 1 and in

estimating the far field we can consequently replace R (a) in the integral of (5. 70) by

the expression given in (5.83). This integral is then just that which occurs in the

diffraction by a semi-infinite thin-walled tube at the positions p = a, -• C< z <,, OD .

Thus, the far field for the semi-infinite rod is the same as that produced by

a semi-infinite thin-walled tube of the same diameter, but longer by C, subject to

the same incident field.

Under the assumption that 'Yom = 0, m > 2, Jones calculated C to be 0.087 a

and he estimates the correct value to be close to 0.1 a.
au

There ii no corresponding result for the boundary condition -L = 0.
ap

17/0



THE UNIVERSITY OF MICHIGAN
7133-3-T

5.2.5 Numerical Computations for the Boundary Condition au/8P = 0

Jones shows that when the angle of incidence is zero,

a t(u+2)z 9dt = 21-o) 5.84)aJ0 =

The modulus of the left hand side of (5.84) represents the average pressure amplitude

on the end of the rod if u stands for the velocity potential of a small-amplitude sound

wave. The constant Ao is obtained from (5.68). Jones solves this equation approxi-

mately by assuming successively

(i) PI = 0, m>0 (ii)I =0, m>l (iii)I =0, m>2

The average pressure amplitude as a function of ka for the range 0 •< ka < 10 is

given in Fig. 5-2. The plotted curves correspond to the third and seventh (0m = 0,

m > 6) approximation, the latter calculated by Matsui (1960) for ka < 3.

When the incident wave is propagating along the axis of the cylinder it satis-

fies the boundary condition along the cylindrical surface p = a. The scattered energy

is consequently finite and can be obtained by integration over the end surface only.

The scattering coefficient c0 is related to the constant 9 0 by

c = -2Re WJ (5.85)

c is defined as c0 = cl/7ra where c1 is the scattering cross section defined as the
quotient of the scattered energy and the incident energy per unit area. The scatter-

ing coefficient is plotted against ka in Fig. 5-3.

For small ka (ka < 2) we can use the approximation
1 2

c _I(ka) (5.86)
0"4
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When the angle of incidence is not 0, Jones shows that, to a first approxima-

Ju tion (which is better the smaller ka), the average pressure amplitude on the end of

the cylinder is the product of the average pressure amplitude when the angle of inci-

dence is 0 and the amplitude of the symmetric wave that is produced in a hollow

semi-infinite cylinder occupying the same position as the rod. The results given by

Jones are reproduced in Fig. 5-4.

Jones also calculates the pressure on the end of the rod due to a pressure

pulse when the angle of incidence is zero. Let the pressure of the incident sound

pulse be given by

Co+i1 -ik(vot- z)

p-(tz) = - 1-e k dk (5.87)

where v0 is the speed of sound, t is the time and H(x) is the Heaviside step function

defined by (5.80). According to (5.84) the average pressureikz
(i.e. total pressure/end area) due to the incident wave e is 2(1 - 0o). The aver-
age pressure due to po(t, z) in consequently

oic - ikv t
p(t)=-~ e 0[1 - 0 Wj]d (5.88)

k0J-OD+ k•

The integrand has a simple pole at k-=0 with residue 1/2 since 0o= 1/2 when

ka = 0. Thus the above integral may be written as

- I I - 200(k) -ikv t
p(t) 21ri T C k e dk

=I+I 5 [(F(k) -l) sin(kvt)+G(k)cos(kvot)] (5.89)

174 .....



THE UNIVERSITY OF MICHIGAN
7133-3-T

2.0

30°0

1.5

S60 0

41.0

•o90 
0

120 1

0.5

0 1 ka 2 3

FIG. 5-4: THE AVERAGE PRESSURE AMPLITUDE ON THE END OF THE ROD FOR
VARIOUS ANGLES OF INCIDENCE (Jones, 1955).
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where 2[1 - o(.]. - F(k) + iG(k) aud we used the fact that go(-k) is the complex con-

jugate of o (k). Jones computes the integral in (5.89) from the earlier values of

P (0W (third approximation) by replacing F and G by parabolic approximation over

the intervals (0, 1/2), (1/2, 1), .... The result is shown in Fig. 5-5. The curve

given there Is within 1 percent of

1.915+0.745 
(2-t) 

1/]

Jones also constructs expressions for the distant fields and for Po whose first varia-

tions are zero for small variations of a n, Ynm and 9m about their correct values.

However, he does not use these expressions in the numerical computations.

5.3 Radiation of Sound from a Source Inside a Semi-Infinite Thin-Walled Tube

5.3. 1 General Solution

The prO'lem of scalar diffraction when the source of the incident field is lo-

cated Inside the tube has been treated by Levine and Schwinger (1S48) and indepen-

dently by Wainstein (1949) for the boundary condition A = 0 (rigid tube).
Bp

We assume that the tube is located at p = a, z > 0 and that a single arbitrary

mode is propagated in the negative z-direction. The velocity potential of this inci-

dent mode can be written as

J(j' A) -Icr' zu(0) = A na cosn e (5. qo)
um J Jn(' )

n rý

m>,0 when n=0, m>,l when n>1

where J'(J' )=0, 0=j <j' <... and
n nm no nl

j .2
2 nma' = 2 n

am F2

is positive or positive imaginary. Tue field inside an infinite tube for arbitrary ex-

citation can always be written as an infinite sum of cylindrical modes. The solution
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FIG. 5-5: THE AVERAGE PRESSURE ON THE END OF THE ROD DUE
TO AN INCIDENT UNIT PRESSURE PULSE. v IS THE SPEED
OF SOUND (Jones, 1955) 0
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of the corresponding diffractionproblem for the same excitation inside a semi-infinite

tube is then obtained by summing up the contributions from all modes.

The total field due to the incident mode of (5.90) is

I Faa) (1) .iaz

u(p, 0. z) - n (5.91)
I (0) 1Fa
u +-coono (--p)e ,da p <a2 Jr. i d(,ca)

-Jr n

where, as before, 2 k2 -2 and the path of integration is given in Fig. 5-1, pas-

sing above all real poles of the integrand when Rea < 0 and below them when

Rea > 0. We have

(k+a)Mn (a)
Fn() = "� m(k+a'M)Mn(a' ) (5.92)

n 2 rn un n m &r +at
nm

where the split function Mn (a), as before, is defined by (5.35).

5.3.2 Field Inside the Tube

When p < a, z > 0, evaluation of the integral in (5.91) by means of residues

yields -J(j A) -ia' z Jo' eia' z

-~p = A J'n~a nm +>Z0(n) 'n nA( a e)u(p, , ,z) = AnamOS , co area e n E R ml a

Ln mI =0 n at
(5.93)

where ,2 -(k+? )MI(,?

R a=- m' -" n Jnm (5.94)mm 4J 2 _n2 )L arn
nm-

is the reflection coefficient of the incident mode and
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,2 (k +tm)(k+&1 )M (a'm)Mn(a )
R ~ ~ ~ ka (n W - - nmbEnamMnQId(.5m1 2_ 2 at (at +CIO 5.5

2(j1 n) al Mt nm tut

can be called the conversion coefficient of mode A into mode An,

We write the coefficients R(n as
ml ie (n)

RQ(R)• .R n)I e nil (5.96)

The moduli and the phases of these coefficients for a symmetric incident wave

(Aoo, Aol) as functions of ka in the range 0 < ka <: J (Jo2 - 7.016) are given in Figs.

5-6 and 5-7. The modulus of the reflection coefficient of mode Al1 for

Ji' <ka < J12 (Jil = 1.841, J12 = 5.331) is shown in Fig. 5-8.

If we introduce some auxiliary functions connected with the splitfunction, the

quantities in Figs. 5-6 through 5-8 can be expressed as

IR(O) = e P1 (k) 0<ka<J'1 -=3.832 ; (5.97)

and

R(0) =k+a 11 ekaReP 1 (k) R(0) k+a 1 1 eaal1RePl(all)

R0'I ---- e e
OI = k-a k-a 11

O _ a RePl(k)+ lReP(all
1(0)1 2k 2i 1 Re1 11

01 o

for •1 • ks< Jo1

S.... ~179 ••-
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FIG. 5-8: MAODULUS OF THE REFLECTION COEFFICIENT FOR MODE A11
(Wainstein, 1949).
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k+al aa'IReS(al

Rk-a for iJl 4ka< jt 2 ; (5.99)111I 11l111

0lO) + 0(0)1) kaImPl(k), 0(0) aalImPl(of (0) = ) (0) oc 1ll

oo 1 11 11 ' lo ol 2

(5. 100)

where the functions P1 and S1 are defined by equations (5.222) - (5.223).

Using the approximate formulas (5.233) and (5.252) we find

IRoo) e 2 [1 + [ log41 + -)] , ka < 1 (5.101)

where logy1 = 0.5772 in Euler's constant, and

]R(0)o, e-ka Q + -L 11<ka<JI =3.832. (5.102)
0. (ue 2 .) 0l

At ka = 1, (5. 101) and (5.102) yield values larger and smaller respectively than the

correct one by about 3 percent.

If the incident mode is A and the frequency is so low that all the higher00

modes are exponentially damped, the field inside the tube for large z is given by

u = Aoo[e-ikz+R(O) e ]' " (5.103)

Equation (5.103) represents a standing wave of amplitude

Jul = A 1+R(0)12- 21 R() cos(2kz+ 0 )) . (5.104)
000 00 00

The first node is consequently located at z = -1, where

2k1 = (0) . (5.105)
00
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The length I in called the end correction and it determines the resonant frequencies

of cylindrical resonantors open at one end. When ka --v 0 the end correction tends to

the limit

urn D1 rtn i (ýd 1 ODLlog 1x0610 628*
(5.106)

The quantity 1/a is plotted in Fig. 5-7, and some numerical values, together with

those of - -LA R , are given in Table VI.

TABLE VI
End Correction and a Function Related to the Absolute Value

of the Reflection Coefficient for Mode A +
00

ka 1/a 0j- ka 1/a 1 001

0 .613 0 .55 .576 .235
.05 .612 .0245 .60 .571 .251
.10 .611 .0485 .65 .565 .266
.15 .608 .0719 .70 .560 .281
.20 .604 .0948 .75 .554 .290
.25 .610 .117 .80 .549 .311
.30 .598 .139 .85 .544 .325
.35 .594 .160 .90 .538 .333
.40 .590 .180 .95 .533 .351
.45 .586 .200 1.00 .527 .364
.50 .581 .219

+Wainstein (1949)

"'The phase of R 0) is given by 0(0) = 2ka-
00 O0 a

When ka >jn' i.e. above cut- off, the power transported by the mode A
nm

of (5. 90) is
* This value was obtained by Brooker and Turing as reported by Jones (1955) and in-

dependently by Matsui (1961). Levine and Schwinger (1948) give 0.6133 and Wain-
stein (1949) 0.613.
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P P ka2a (2) 1A 2  (5.107)
n~m

where p is the density of the surrounding medium, v the velocity of sound and

C0 = 1, ,1 = 2 =.. = 2 are the Neumann numbers. Thus, the fraction of the power

of the incident wave A which is converted into the mode An, and propagated
nm

towards z = co is

2)

- R ( (5.108)

From (5.95) it follows that

r• ( r(n) (5.109)

which is a consequence of reciprocity. The total power reflection coefficient for the

mode A is
nmn

mr(n) = rr (5.110)
I =0

where the summation is taken over all propagated modes. In Fig. 5-9 the power re-

flection and conversion coefficients together with the total power reflection coefficieni

are given for the symmetric modes Aoo, Aol.

5.3.3 The Far Field

If we introduce spherical coordinates (r, 0, 0) such that z = r cos 0, p = r sin 0,

and evaluate the upper integral in (5.91) by the method of steepest descent, we obtain
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FIG. 5-9: POWER REFLECTION AND CONVERSION COEFFICIENTS OF SYMMETRIC
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the total far field*

ikr n a(k+& )(l+cosO)M (W )Mn(kcosa)
u(r,0, ) - A ccSno-. mr . (5.111)n r 2v sinO(kcos8 ++an)H(1)1(kasinO)

am n

The power radiated per unit solid angle about the direction (0, 0) is given by

p(I,) v k2 uer . (5.112)

This quantity divided by the power of the incident A mode is called the vowerim
pattern fnm(0i, . Using (5. 111) and (5.107) we get

fn(0, 0) en=Wk+anm)2 n(an)j2(I+Cos )2jM (kcos )2 2
: 2 ,COS3 n2 1 124wrat ( 2A~ sin 9(kcose+a' ) jH l(ka sin6)(513am nm n(5.113)

where as before, c = 1, eC -"2-- ..C 2 and ka > Jn" The relation between

fnm(0, 0) and the power gain function, i.e. the radiated power related to an isotro-
pically radiating source, is

G (nm(6, ) = Prad/ - 47r (n) (5.114
m

where rIn is the total power reflection coefficient given by (5. 110).m

If we insert in (5. 113) the expression given by (5.215) for M ((a) 9 L1 (a), we
obtain

As pointed out by Noble (1958), the sign for the far field in the directions 8 = 0 and
0 = 7r when n = m = 0 as given by Levine and Schwinger (1948) (Eq. MI, 12, 13) and
by Morse and Feshbach (1953) (Eq. 11.4.33) seems to be in error.

187



THE UNIVERSITY OF MICHIGAN
7133-3-T

Sj12( In ( ) exp ka (Re Pl(ka)+ coos O Re P](k coo
00 7 2 sin 2 H1 (1(ka sin 8)j 1 8

(5.115)

when 0 < ka < J = 3.832, and

foo()m° A+.l. kcosO+alm 1 (ka sin 8)

fo.0 =T m= -alm kcos9-a 1 lm, sin2 0H1l)(kahin9)I

)( exp [ka (Re P 1 (k)+cos8ReP1 (k coso J (5.116)

when j K ks, <j'(m+l)" For the lowest mode with n-dependence cos no (also
om *~ +)

Including 'oi) the corresponding expression is

011)2

C a, /tan-\ý 2 ,kaslng)
fui(,0 n2nif 2 __ __ _

Itn 2 ) 1H iH (kaslnO)I

exp Ian ReS(•a1l) +kcosOReS (kcos0 n
X 2 2 an)Cos

Cos OCos n1 (5.117)

when <ka <jl , where 9 is defined by

kcos9 = -a' (5.118)
nm nrn

The power patteins of the mode A for different values of ka in the rangeo0

0<ka<4.023 is given in Fig. 5-10 and for modes A and A for ka=4.023 in

Fig. 5-11. The power gain function in the forward direction (8 = r) for mode A
o0

is

The factor /tan is missing from the corresponding formula (Eq. 81)

in Wainstein (1949).
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FIG. 5-10: RADIATED POWER PER UNIT SOLID ANGLE FOR INCIDENT MODE
A00 CARRYING THE POWER 1 WATT. (Levine and Schwinger, 1948

(a,< 3.832 ) and Weinstein, 1949 (ka = 4.023))
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k)2
G°°(70 = -, (°a) 2o (5.119)

00~~ 001~I

This function is plotted against ka for ka < jo1 = 3.832 in Fig. 5-12.

The exact power patterns of Figs. 5-9 and 5-10 can be compared with the

Kirchhotf approximation, in which the radiation field is calculated from the incident

field and its normal derivative at the open end.

The radiated power per unit solid angle for the Incident mode A n carrying

1 watt of power obtained from the Kirchhoff approximation is

ck sin oil(kasi29

/K 29 )aS n sn9ý coor2 no (5.120)
am 2 )Co'se- cose8

nm n2

where 0 is defined by (5.118). If we compare (5.120) with the exact expressionnmn

of (5. 113) we find that

f (80) )= f, 19' 0=I ICos nnm n;K 42
S(1Z(5.121)

The Kirchhoff approximation therefore gives the correct value for the radiated power

in the direction 0 = 0 (7r/2 <80 < 7r). It also gives correctly the directions ofnm nam

zero radiation if 0 > 7/2.

Prom (5. 113) we obtain the special cases

f (0) ka) R0) m = 0,1,2,
om 41r'' a I "mo"om

(5.1221
f•(O, 0 n->1
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c JIJ(ka)2
f ("/2r ) = ,2,,HI ' ' mm 0c no (5.123)

m n

f~ ~ 
(I)ra))

00 4w (5.124)

•nm(•@ o. m•

The corresponding values for the Kirchhoff approximation for the mode A are00

1 2 (,,) - (ka) 2
fK (0) =0 f1K(w2) = -j- a CW) =-- (5.125)
00 00 4r00( 4v

f (0), f (7r/2) and fKo(7r/2) are plotted against ka in Fig. 5-13.
00 00 0

For low frequencies the Kirchhoff approximation can be improved if we add

the reflected A mode to the incident field. This modified Kirchhoff formula for
00

incident A mode reads
00

f = I(()osing1()"- cose 2 + ) (1+cos0)2 - 2sin2ORe

(5.126)

A comparison with (5. 122) shows that this expression yields the correct value not

only for 6 = 7r but also for 9 = 0. A comparison of the exact and approximate power

patterns for ka = 1. 0 is given in Fig. 5-14.

As our problem is self-adjoint, there is a reciprocity relation between the

results of this section with those obtained for scattering of a scalar plane wave in

Section 5.2. The prinoiple of reciprocity can be stated as follows. To the incident

mode A of equation (5.90) we relate the far field cos n - gnm() and from an
nm r

incident plane wave given by (5.59) i(. e. propagating in the direction (e0s 0)) we

assume the excitation inside the tube to be
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OD OD (it P) 1w
B n-nm a co oenm

u(p,0 , z) E Tcosne ri .

Then

2c 01 2( 1 )f 2 n rimn(9

riB ( -n n1 g ( (5.127)Anm nm W.2 _ 2,) 2 a, gnm( -i)

n-n nm

It is readily checked that (5.127) conforms to (5.65) and (5.111). It may be noted that

if we want to use the principle of reciprocity to calculate the field at an arbitrary

point inside the tube due to an incident plane wave, we must know the far field ex-

cited also be all evanescent modes. Equation (5. 111) is still valid for a mode below

cut-off, but the quantity fnm(O, 0) of (5. 113) has lost its physical meaning as there is

no energy transported by the incident mode in that case.

For ka < 1. 841 the absorption cross section for an incident plane wave, de-

fined as the ratio of the power transmitted into the tube to the power incident per unit

area. is related to the power pattern of mode A by
0o

Ta (91) = X)2 f0 (7r- 0) (5.128)

where X = 2w/k is the free-space wavelength.

5.3.4 Cylindrical Resonators with an Open End

We assume the resonator to consist of a tube of length L closed at one end by

a rigid wall and open at the other end (Fig. 5-15). The resonator is excited by a

plane wave propagating along the positive z-axis
(0 ikz

u(0) =Ae . (5.129)

If we neglect all higher modes, the field inside the tube is represented by the mode

A alone, reflected with reflection coefficient 1 at the closed end and with reflec-
00 (0)

tion coefficient R of (5. 94) at the open end. Summing up all these traveling waves
00
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FIG. 5-15: CYLINDRICAL RESONATOR WITH AN OPEN END.

we obtain the velocity potential

ikz + ik(2L - z)
u(z) = A Ie (5.130)

As a measure of resonance we take the quantity

g = I (5.131)

which is equal to the ratio of the pressure amplitude at the closed end to the pressure

at an infinite plane screen located at z = L. Introducing the end correction I defined

by (5.105) we obtain

1= (5.132)

1j l+R1+21R1 cos2k(L+I)

Fig. 5-16 shows g as a function of ka for a resonator with L/a = 7.82.

5.4 Scattering of a Plane Electromagnetic Wave from a Semi-Infinite Thin-Walled
Tube

5.4. 1 General Solution

Let the semi-infinite tube occupy the space p = a, z >.0 and the incident plane

wave be given by
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FIG. 5-16: RESONANCE CURVE FOR A CYLINDRICAL RESONATOR WITH
LENGTH TO RADIUS RATIO 7.82 (Wainstetn, 1949)
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ik(x sinG +zcos0)
E = (-cos0 cosp +sing i +sine cosoA z )e (-- y (5.133)

Hi = 0(-cos ei sin o s i + sine sin 'E eik(x uin 0i +zcos0)

-- x y i z

i.e., its direction of propagation is parallel to the (x, z)-plane and makes an augle 0i

with the (y, z)-plane. The configuration is given by Fig. 2-2 with 0 exchanged for a

The problem has been treated by Pearson (1953) for the special case 03 = 0

(incident TM-wave)* and by Bowman (1963a, b, c, d) in a series of unpublished memo-

randa. Its solution is, in principle, given in Section 5. 1 as soon as the functions

f (a) and gn(a) of (5.42) and (5.43) are determined from the incident field. Inserti

x = p cos 0 in (5. 133) and using

ikp sin 0 sCos
6z inJa(kP sin0i) ein (5.134)

n=-•D

we obtain

Ei (a, z) = sine cos 3 e I in n(kasiaO) ino
E i ik sn . e
n=-GD

(5.135)

E(a, ,z) = - eizCs9 O seico J(ka sine)+
ikzZco ki, o no

n=-cD - n

+ isingJ'(kasinO ineinO
n I

From the definitions of f (a) and gn(a) in (5.42) and (5.43) we get

* The sign after 1 in the quantity Nn(ik) defined in connection with equation (2) in
Pearson's paper seems to be incorrect.
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21nuin•(JlkasinOe)

n•) M (kMco O1 )(a- kcos01
(5. 15 )

+ n+21nstn •Jnlka sin O)

f (-k) i
n = M (kcoSOl) k(1+oos9)

21n+l sin 01cos J (ka sin 0I)

aný() ka(l + cos 1)L n(kcos Oi)(a - kcoos 8i

(5.137)

2in+l cosAJ (kasinOi)n

ng(k) = k 2 a sin iLn(k cosO1)

where M n(a) and L n(a) are the split functions defined by (5.33) and (5. 34). Inserting

(5.136) and (5. 137) in (5.44) and (5.45) and putting Fn() = Gn(a) - 0 yields the solu-

tion to the problem. In accordance with (5.55) and (5.56) we write

OD
X(P,' 0.Z)-- x i (.X0p' Z)+ I[(H +B()H(n)1(P eiaz dov

77Kn nn=-o r (5.138)

p >a, -CD<Z<OD

OD C
X(P, 0.Z) = Xi(PF.0Z) + Z: e in [Aaj(j)BaJ(r1 a dov

n=-aD Jr (5.139)

p<a, -oo<z<0o

where as before o = Pki-a" and the path of integration r is as indicated in Fig.

5-1 with the addition requirement that it passes below the pole a =kcos 0i. X stands

for an arbitrary component of the total field, and X is the corresponding component

of the incident field. The functions A(a) and B(a) are given in Table V if we take
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b(o) = c(a) = when p > a
S(aic) H (1)(aK)n n

(5.140)

e-(a) (,a, a)
b(a) n c(a) = Jn(ai) when p <a

n n

where, from (5.44) and (5.45) and (5.136) and (5.137),

n- 2akn (k) L 2ia cosW3 J (ka sini)
e (a) = iaa(k+ct)Mn(a) 2222 • n ni

a 4k 2a 2M 2(k) -n 2L 2(k) sin ir( o
n n

n sin3 L (W Jn(ka sin 0 a sin IJ'(ka sin 9)(k- C)
al n i + al 1 (511

k(l +cos0i)Mn(kCos 0)I + Mn(kcos0i)(a-kcosi)r (5.141)

2akn (k) Win coso3 L (k) J (ka sin 0i)

•;n~a'ci)iL= L4k2 a2M n2 Lk) W -k 2 inL(k s)

2 sin AM (k)J(ka sinO1 )\1icoos0sinO 8,, (ka sin 0 )(k +c)
n a ~ in

k('+co'oi)Mn J) J '" k(l +coo )Ln (koso )1,-kcoso-0).1

(5.142)

As a special case of (5. 138) and (5.139). the curreng flowing in the wall of the tube is

given by

-J0, z) = Hz(a+0•0 z)- Hz(a- 0,0, z)

i Fco n ei• : iolZd
I , Z( eiCo dr (5.143

o n4-, a kx2 Mn(a)Mn(-a)
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Sz Z) - H0(a+ 0, j. z) - H (a- 0, •. z)

ODq~, nte-(Or) kC aa

L.... 44 2 e da.
'rro nz-ow a M aWMa(-a) aszLn"rL (-a)

(5.144)

5.4.2 Field Inside the Tube

For the interior of the tube, i.e. p < a, z > 0, the integral in (5. 139) can be

calculated by means of residues. The contribution from the pole a = k cos 0 cancels

the incident field and we obtain the H and E components of the total field expressedZ Z

as infinite sums of TE- and TM-modes respectively:

H(p0z) OeDn Jn(j•' i2) ' z
H ( =, Z e am (5.145)

n=-O m=l nn Jnm

OD OD J(j P-) Ia
Ez(p,,. z) = Bm e n (jn a e (5.146)n=_oD Jnjo J.)•

where as before J'(J' )= 0, 0 < J'1 <j ' <...
n arn n n2

2'

J(Jn =, 0<J <j <... anda' = 2_ 'n hm a2_
"n nm n1n2 nm 2 rn 2

a a

are positive or positive imaginary. The constants A and B are given bynrn rnn

c•o° e-(a'n)
A =_-- (5.147)

F ka 3al n(n)

2m
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and

B (a, a )
am zn Zr fl (5.148)

Bn 2
Kim

The remaining field components are readily obtained from (5. 139) in the same

manner, or by Maxwell's equations, from the knowledge of Hz and E . Specifically

the surface currents on the inside of the wall of the tube are

J(,z) = Hz(a, 0, z) = A inm onm

0 z n=-oo m
(5.149)

(D nacv' ial zZ)- (,, ino n A~ Ane nm
ji( 0 z)= = -- ~ e'0 - e ,z J~j1 2 nmn=--1 M- k B n

B m emm Z
I Jftm n m

5.4.3 The Far Field

When kr sin 20>> 1 where r, 9 are spherical coordinates such that p - rsin 0.

z = r cos 0, the integral in (5. 138) can be estimated by the method of steepest descent

When 0 >0 i we have to cross over the pole a = k cos0 i to deform the contour of in-

tegration into the path of steepest descent. The contribution from the integral along

the path of steepest descent when 0 * 01 is given by (5.58) and for 0 > 91 the residue
r

at a = k cos 6i yields an additional term which removes thz reflected wave X . As in

the scalar case we use the method of Vander Waerden (1951) to obtain an expression

continuous at 6 = 0 (cf. Section 5.2.4). We write the Ez and Hz components of the

total fields in the far zone kr sin20 >> 1 as
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E E ikr cos(O-

ikr

+ sgn(O- O)A ( H(0)T(r- 8- 0 e (5.150)
2 1 E, H i kr-sinO

where

1 Zzn 6(a, k cos 0)
UE(,) = - ()u+1 ein (5.151)

A =-OD H(1)(ak sin O)
n

AE(0)= e-f 4 cos P ] (1) (5.152)
nf-a) H (ka sin O)

and

U 1 fo ' e-(k cos 0) ino
H0') = (1 2 ( e (5.153)

o n=-a) (ak) sin0 H (ak sin0)n

AH(0) = sing 11)' e (5.154)
0 n=-ax• Hn 1 (kasini)

n I

The functions H(Wi - 9) and sgn(i - 0) are the Heaviside step function and the signum

function defined by (5.80) and T(r, 0 -01 ) is given by (5.81). If 9 > 9i, i.e. the ob-

servation angle is outside the domain of cylindrical waves, the scattered field is a

spherical wave given by
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r Es UE(0,0) ikr

ES~° 9, ") o Haz E e
=e~) I H~ = -s--n sine r

(5.155)

W 1 Hs a U(8,) ikr
106 z _ o H' e

E (r,O,•) ,o. H o n e;8

In the negative z-direction, i.e., 9 = r, we can still use (5. 155) in spite of the fact

that the condition kr sin2O >> 1 is not satisfied. In the sums for UE and UH only the

terms n = + 1 will contribute and we get:

0 = O H e ikz 1 2iacosi3 1(k)J 1 (kasin0i)
,O.vz 2eLk (5. 156)

ExO 0,z)= - Y 57- z-T k2 a2 M 2(k) - L21 (k]) sineiLl(k cos el

ik-- I •• M J°k-(kasin 0

Ey0 re z0- x ka2M 1 (k) - L 1 (k] (1 + Cos 0 i)ml1(k cos 0i

(5.157)

as as z-+-c-o. Along the outer surface of the tube, p = a+ 0, the fields when z -4 OD

can be estimated from the integrals of (5.138) by deforming the path of integration in

the upper half-plane into a U-shaped contour around a branch cut from k to k+ ioD.

The symmetric term a =f 0 is dominant, and due to the boundary condition the com-
ponents Eo0 Ez and H of the total field are identically zero. For the remaining

components of tl thotal field, representing surface charges and surface current, the

results are:
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ikzcosoi 0 ie ( icos cos 1
E (a+O,O~z) -.-- 21 e zi i Kkasi9 (1 _+

a+ ,),H n=-a) (sin H lkasln)1)in +

+ _nsin_1___ 2icosPJo(ka sin 01) Lo(k) eikz
+ 2 (1) ) kasin 01L (k cos 0) 2z +w(ka sin0)2 H (1l~a sinO)iionI +n-

in 71ka2

(5. 157)

f H (a+ 0, O z) V 2 ikzcos0 1  D -in einCo+
n=-O ýka sin 01H nl(ka sin 0 )

nsingcosO 1 2icosPJ 0°(kasin i )L a(k) eikz
2__ _ _ _ 0 o(1), kasina L10 cs 2z +_j

(kasin01) Hn (ka sin 0) s L Inska 2 2Ska sneI~ok c~seio ', +k

21 ikz cos 9 OD

zH +O -v z) -; 2 e in e'no stno
C z a + 0 . ) ( 1 ) ,n=-oD ka H 01 " sin Oi)

ýl ( (k sing:(ka sinO' ) +k e(k)e +e -(k)eI a e

kcos(1-Cos0) k1 b -1 )
as z --*co. where In y1 = 0.5772156649... is Euler's constant. The terms contain-

ing the summation over n from -co to aD are the fields pertaining to an infinite

cylinder (cf. equations 2.41 and 2.42).

5.4.4 Axial Incidence

The case of axial incidence, i.e. 0i = 0, is of some interest because in that

case the sum over n only contains the terms for n =- + 1. Thus, we need to know

only the split functions M1(a) and L1 (a) (W M (a)) to solve the problem.
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The solution is obtained as a special case of the previous results if we put

0- . It is no restriction to assume the incident field to be polarized in the x-direc-

tion, i.e. the incident field is

i = Tikz

x
(5.158)

Hi = F -Mo yikz.

The components of the total field are theia

( ) .- a-E-o HeT)1 ("•o ) 23H (a)H 2 e dcZ

E (poz) E ilo H( ) + e (a i H1 1 1 eiaz d

H (1(ca) a2 3 (1)(c,

E p~z -. a (1)( e dca (5. 159a)

, r' I

(1)(1)
I:• - HIH (')ca)

(e H ~(1C ) 4-(a, ae() H (1o)

(P, Z E ii s Z1 eiaz da

+ in It z (1)

(p,,z = (1) 1

iT Jl\(Kp H(ip
E~~~ ((i) os(.a) 1 ea a ci H (5.15a)j

IE ,,6>(a .+)H¶1)(Icp, ae(a) H-1,,t,<a

H~ (2 )=H + iSn I1' 1 1
P P H~j'(ica) pa~ 2' H(1 (c)/

xeiz da
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iE sjn 1l I H1  apH(P..z) _n(1) e da (5. 159b)

z TOO- Iff a 2kK H (1)10a)

wher. p > a, where el(a) and 67 , ac) are obtained from (5. 141) and (5. 142) by put-1 Z1
ting n=1, 0i=0 and P= r. Thus,

el•)=- 2a_4 k2 M 1(k)

e (a) = a42 1 W (k +a) M (a)1 2 22 2 14k a MI(k) L1 (k)

(5. 160)
aL (k)

zilaa =4k2 a2 M 2 (k)2 Ll(a)"

The field components for p < a are given by expressions identical to those of (5.159)
with H(1) and H (1) exchanged for J and J' respectively.

n n n n
The H and Ez components of the field inside the tube (p < a, z > 0) are

D 12me-(a,) Jl(Ji a) ia t  z
oa 1m '1 1) ma iHz(poz) -2i sn 3 1 0- a

m=1 ka3 m•1 1) 11mi

(5.161)
Z Jlmezzl(a, ailm) Jl(JlmJ•) laimZ00 J

E z(p, 0, z) = -2icoso 2 J -0
m=1 a • Itim,nmn

The far-zone scattered field is

Es= d••-' H ce1 (a'kcOso)

E0 O H0 -r r sinOHl(1)(aksin0) coo
1

(5.162)
s go e ir e 1 (k coso )

.= _ f2 v r 2 (1)?k sin)
- (aksin8) H1 (aksin9)
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when kr sin2 0 >> 1. In the back scattering direction 9 = 7r the polarization is the

same as that of the incident field, and from (5. 156) we obtain

6ikiz i ia2 k

Ea(0, 0, z) , -i-p 2 2a 2 2 z--4-a) (5.163)
x 4k2a2M 2(k) -L 2(k)

1 1

Along the outer surface of the tube the asymptotic forms of the nonvanishing compo-

nents of the total field are

222 2

Ef(a + 0 z) H (a+ O0, 0 z) -- cos 0 eikz ik2 4k +L(k)

"222 2 222 (5.164)

01 e04k a2M 1 (k)- L (k)--z"

as Z --* OD.

5.5 Electromagnetic Radiation from a Sour. - Inside a Semi-Infinite Thin-Walled
Tube

5.5. 1 General Solution

We assume that the tube is located at p = a. z > 0 and that a single waveguide

mode is propagated in the negative z-direc'ik,,. The incoming mode can be either a

TM mode with the axial component of the electrical field strength

J (j ~)-a z
E i = E Jn(Jnm) cosnoe a (5.165)z amn J' (jn anm

or a TE mode with the H -component

J (Jtn.) -ia' Z
HI = H n na cosne am (5.166)

z am J nm(J')

n0, m209
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where Jn(J 0 O 0 < Jnl < Jn2 < ...

nn n2nm

anid

2 2 Inm
-k- - n-

nm a nm a

are positive or positive imaginary. For arbitrary excitation inside the tube we have

to calculate the field in a corresponding infinite waveguide at z = 0 expressed as an

infinite sum of waveguide modes and then sum up the results from each mode.

The problem has been studied in detail by L.A. Wainstein (1948c; 1950a, b).

We can obtain its solution from the results of Section 5. 1 by proper choice of the

functions fn (a) and gn(a) in (5.44) and (5.45). For that purpose it is suitable to de-

compose the total field into the field obtained from the surface current at p = a,

0 < z < cD, connected with the incoming waveguide mode, plus the scattering of this

field from the semi-infinite cylinder. For the scattering problem so formulated the

expressions of Section 5. 1 are directly applicable and

23

en(a) = H , Mn(6)Mn(-a)n nm 2c (6+a I ) a nn nm
(5.167

2 2 ýMJ2t2a2 i2a2n + j'm

f9'(a, a) - nL (a) L (-,a) [E J1 ) a2 +nH ic a a a) 2a
zn~aa 2c -"n Ln( )n(' nm J nm (a+ hm÷nnm LW.oJ2 (a+ am,

where o = I ... = 2. The only singularities of e n (0) and tiz(a) are at
2 1 zn

a = +k. Inserting the expressions of (5.167) into (5.42) and (5.43) and separating

the result according to (5.7) and (5.8) we get
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w p aM(aI )
C f- (t) o n nm

n n nm (+a' )
nm

WoJA H [Mn(anm) - Mn(k])

nn nm k- oinm
(5.168)

ia(k+a nm)L n(ar a) nkL n(k)
•ng ), =-imn -'- H

A am j(ca+ a ) nm aweo(k+a)(k- a')
ti m 0 nm)

iaL n(a m) nL (k)

ng(k) Enm j nrn 2awc (k- a'n)

The quantities e_(a) and 1C (a, a), related to the Fourier transforms of the tangen-
n zn

tial components of the total electric field strength at p = a, -oD < z < 0, are obtained

from (5.44) and (5.45) on putting Gn(a) = Fn(a) 0. We write an arbitrary compo-

nent of the total field as

X(p, 0, z) = - ,)H)(p.)+ B(a, 0)H (p1)'( eiaz dc, (5.169)27r _n

p >a, -a < z < a

X(p,O0z) =X(p,0 z+~ ~ [A(a.o~ )J(pK)+B(ct O)Jl(p1acjei da

(5.170)

p>a, -oD<z<ao

where as before C = - and the path of integration r is as indicated in Fig. 5-1.

Xi xtands for a component of the fields of the incoming waveguide mode and the func-

tions A(a, 0) and B(ao 0) are given in Table V11 if we define
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2k3 a5nMnlk) Ln(lkLn(Onm)
P E W) n ri (k+a)M n(a)J~N

a 0( _a 3 (61 k.-.a n kL(k) OM (a)

(5. 171)

2 2
a2 (k+ anm)(k+ a) n1k In(k)'"

(of ri- L a+ _ L (a)
QE j) Ln m) n, 2(a+am) N " n

2a 2ak2nLWnk) M nk) M(a'n)

QH(=) f (k- a'n)N nL()

where N = 4k2 a2M2 (k)- L 2(k).
n n

As a special case of (5. 169) and (5. 170), the curant flowing in the wall of tne

tube is given as

-Jo. z) = Hz(a+ 0, , z)- Hz(a -0, 0, z)

-ia' z
= -H cosn e rm +

nm

+ cO •i HamPH(a)coo no+E nmPa)sinni0) e no

c rM k x Mn(a)Mn(-a)

(5. 172)
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TABLE VII

Relation Between the Field Components and the Quantity X
of Equations (5,169) and (5. 170)

x A(a, )Bo,0

E [b- Lb(a) com n - b(a) sifn] nK [YcE) coono -cH~a) sin no]
px a

E u9 [cH(U)-c#s 0'c" cE()sn 72-bE(0sinn

0 [cPcsK~ K a

E -I EE(a) cos no - cH(a) sinno] 0

H 0 [H(u)COsnB+cE(u)sln [H(a) cos no+ bE(alsin
•o:a

Hl• -n32 •[bE(u)cosn [" bH(a)sinn [CEn (a)sCn

HSz ' 2S[bH(a)cosno+bE(a)slnn ] 0

where
E mPE(a) Enm PE()

b E(a) -1 () ,' bE(a) n J(aE)
H a(&Kc) nn

H nmPH(a) HnMPH(a)

H (1) H J' (aK)
H 1)(aic) n

n for p>a for p <a
E nmQ() E nmQE(a)

cE (a) = c E(a) n= a
Hs(ax) nn

HnmQH (a) H nmQ(a)
ell(a) = ellU) j(a)-)m
CH~a (1) -cH (a)~

H nl(aK) a
n--3
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j2 (¢,z) H (a+

:o-•nmZ aanm -a' z
= • .. •.Enrcosnme mm+ ,2 H sinnj~e nmfl +

m ��nm m

am

+ Fe 0 1 na aHrm 4Mna)Msnno-EaE(.a) co÷o

k [H QH(c) sin no - Em QE(Ea) o0 no e iaz da (5.173)
+ K2Ln(a) L(-o)

n n

5.5.2 Field Inside the Tube

When p < a, z > 0 the integral in (5. 170, can be evaluated by means of resi-

dues. Thus, the E and H components of the field can be written asZ Z

mn( Pm)a -i z ( i mt na ziEn"O rut m) I a amnE nz a n
EO(p, "•z)E Jnm) e +. + R e Jnl0 +

nL a 1=0 mnI

+~~~ ~ (niln P-THJn~••) eion z

+-Hmmsin no 0ý, J(nj) a (5.174)

FJ (J £) -Ia'n z , J (' 2) (a'z
Hzp• ,) nfOn manma nm>nH anln!a ) l

H (p..z) HnCOSn0  (J' ) e nm + L R J(j' P e+
L nam 1=0 m nj

ODsin j• T~EJ(JaI P-) ia.uz

+E sinmn TrE ' a e (5.175)
mm 1=0 mt n

where
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nE E nE
R nE = I m-lR 1QE(E 1 lmi mil 2 n.1

Sa ni

io nH "j ,2

nH -'RnH I e ml 2 niRrml 2• 2 pH(a)Toakn(J'" n H k

Jn at(5.176)TnH n
T ml 2 - QH(afra)a an

,2
an 0--k~ (n/,.1 n PE(anl)

M1 7 3 2 2 E
0 kaý 1 (J;ý-n

For symmetric modes (n =0)nH = 0 and the reflection and conversion
Fni1 1i

coefficients are easily expressible in terms of the auxiliary functions P n() and Sn (a),

connected with the split functions, of equations (5. 220) and (5. 225). Thus, for the

reflection coefficients we have

SER1 _ k+°l-0 aa 01IReP°(a 01

111 k-a 
I

0 o at 1 m o(ail 0 1 4ka < j 2  (5.177)

oGl aa11 ReP1(a 1
R, 1j=e

oH 
1< ka < J12 (5.178)

o= aa IImP( 1 )
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Approximate expressions for the reflection and conversion coefficients of arbitrary

Enm or Ham modes can be obtained using the function U(s, g) defined by (5. 258).

The absolute value of reflection and conversion coefficients of the symmetric modes

Hoe H 02 and of the reflection coefficient of mode Hll as functions of ka in the

range Jl <ka<J 3 (j =l 1.841, =o3 10.173) are given in Fig. 5-17 andthe cor-

respondi% phase functions of symmetric modes Hol, Ho2 are shown in Fig. 5-18.

The absolute value and phase of reflection and conversion coefficients of symmetr',l

modes Eel, Eo 2 for Jol <ka <Jo3 (J1 = 2.405, Jo3 = 8.654) are shown in Figs.

5-19 and 5-20.

When the incident mode is E01 and jo0 < ka < Jo2' or when it is H and

Jol < ka <j' 2, n=O0 or jll' < ka <Jnl' n >l, the only undamped mode traveling in

the positive z-direction is the reflected incident mode. For large z the z-depen-

dence of all components of the field is given by

Z(z) = e _ R e (5.179)

where h is the wave number of the incident mode and R is the reflectio, coefficient

given by (5.176). Equation (5.179) represents a standing wave of amplitude

I Z(z)- = F, +jR1 2 + 2IRIcos(2hz+9) (5.180)

Thus the first node or antinode is located at z = -1 where

2c lt = 1oE (5.181)
01 11

for an incident Eel mode and

2al' ) = eII (5. 1&,
n1 11

for an incident H nl mode. As in the scalar case we call the length I the end correc-

tion related to the pertinent mode. In Figs. 5-18 and 5-20 the quantity i/a is plotted

ior incident modes H and E respectively.
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FIG. 5-17: ABSOLUTE VALUE OF REFLECTION AND CONVERSION COEFFICIENTS
OF SYMMETRIC MODES H H AND OF THE REFLECTION COEF-

FICIENT OF THE MODE H1-. (ainsteiln, 1948c; 1950a).
11'
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nE nH nE
There exist some symmetry relations for the coefficients Rni Rnm, TmE

T13.H From (5.171) and (5.176) we obtain

na~~ R -ntRn

2 Im 2 Rmf
Jnm 11L

at W,2 n•2(i .n 2
nm(nm nH at nH

,m Bm = "14 R mi (5.183)
Jam n1

at (12 _n2
TnH. 0 nl t T~nE"no at(•-2

Furthermore, for symmetric modes (n = 0) and ka Joiom >Jolt

oE oE

oE =eoE + mm(°4
Am = =il 2 (5.184)

The same relation is true for 0;H if ka • J > jo

The power flow connected with the modes of (5.165) and (5. 166) if ka > jni or

is
nm

pE = f0 ,ra 4 ka n1n 1 2
am- 2cj 2  n1E °

(5.185)
ir4kca"mJ, 2) 2

= o I a =_

Ef ka > jn/ 3' the fraction of the power of an incoming undamped E mode con-
onm

verted Into the E and H modes respectively is
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2

ME Jnm t 2 nE
n-j 2 1Rn

(5.186)
I 2 a, -n 2)

tnE = nm onsn " nE1

Ins5 C 4In
0s jo •anm. m

Similarly, the fraction of the power of an incoming undamped H mode convertedrnm

into the H and E modes respectively if ka > J' jn Is
alI na ijsi

JH4•at (Jt-n2) 22

nH ' ma 1H1
-n j1 4 2 2(j . r• miI

(5.187)

94

t nH 0 2 Jrmns ITnHj
ms °o 2 a I(-,2 n2) 1 Malins nm am-

Using (5.183) we see that

nE nE
rim =rm2

n.H nH
rim fr m (5.188)

nE = nH
Em mi

The total power reflection coefficients of the modes E and Ham are
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rnE = rLE + nH
rm m

(5. 189)

=1 5~

where the summation is to be taken over all undamped modes.

5.5.3 The Far Field

We Introduce spherical coordinates r, 0 such that p = r sin8 and z r cosn0

and assume that kr 2sin20 >> 1. The integral in (5.169) can then be estimated by the

method of steepest descent. According to (5.58) the result is

M E
E (r., 0 ) "f H• -

rco , r -sing

"- (-i)n, [EmQ (k cos 0) cos no - HnmH(k cos )n in]e ir

w sin8 H-)1 (ka sin0) Lmr
n

(5.190)

T~ He
E(r, 8, ) cg H sine

ir (ka sin 9)2 H(1 ) (ka sin 0) nm PH(k s G)oos n m+ EPElk cos r)sln --] .
n

Equation (5.190) is still valid in the negative z-direction (0 = w) in spite of the fact

that the condition kr sin 20 >> 1 is not satisfied. It is readily checked that the far

field of order 1/r in that direction vanishes except when n = 1 in which case the re-

sult is
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O k 2a3aL(a lm) LI(k) ekjz I
(0,~ ~ ~ ~ 0m Z)H -IEI [kaM (

S 4 y 2Jlm 12W _ L 1 IzJ

(5.191)

eo ka3M (m)M (k) eiklzl

H (0,0,z) E -- H (-' 1 2m 1 2 z
(kal •[4k 2 a2 M(k) -L(k]

Z--* -GD

When z tends to infinity along the outer surface of the tube (p = a+ 0) the integral in

(5.169) can be estimated by deforming the path of integration into a U-shaped contour

around a branch cut from k to k+ i10. The asymptotic behavior of the nonvanishing

components of fields representing surface charge and current so obtained are, for

ikaL 0(cra )L 0(k) ko aLlom) Lol ikz
E P( +0, :) oH•0 . v oE .., 7o.. t 2 z: 2 +,1 " 2)

y1 ka

(5.192)
ka2L(a )L(k) ikz

Hz(a+0,z)v%. -H 1kom 1 e

z nmn 2(k+o!' 2
om z

as z --* o, where hi= 0.5772156649... is Euler's constant. For n 1 we have

"po (2n-1), [4k"2 a k2 Ln(k)Mn(k) ek:

FOn a e
Epa + O0 .- )= J-H (il " n-1,):[-ik2a2 M2 2k)nW'k K.

X [ 2k 2M n(k)L a(aran ) co no+a m n (tIrm)nk sinao2kan nmcos n0 + Hnm -a

Lam om nm kam

(5. 193a
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2-n1.1)n 1i a2n+2 kn+2LlWMnak) elkz

H Z(a+0#.~z) X2 2 n 1
a (n-i)! [4 k a M n(k)-n Ln(k]) z

• nMn (n)Ln(k) F 2ka2M (k)Ln(a
'KH nm n.. 2kMk)o n

Sk- a' con- o Eo- Jnm n sinno
(5. 193b)

By a well-known formula, the field outside the tube can be expressed as a sur-

face integral of the field components over the opening and the outer cylindrical sur-

face. In the Kirchhoff approximation the field over tne opening is assumed to be that

of an infinite waveguide and the field on the outer cylindrical surface to be zero. It

is readily shown that the field obtained from this approximation (in Kottler's formu-

lation, cf. Stratton (1941). p. 468) is identical with the field calculated from a sur-

face current in the wall of the semi-infinite tube equal to that of an infinite waveguide

Thus, the field of the Kirchhoff approximation is what we called the "incident field"

in our formulation of the problem as a scattering problem. The components of this

field are obtained from (5.169), (5. 170) and Table VII if we put P K(ce) = 0 and define

pK(a)I QKK) and QK(a) such that

H EH Pa)c c)

rim n n
(5.194)

HnQK(0)- iE Q K(a)= C n 1z(a.a)
nm amE n zn

where ehi(a) and izn(ac) are given by (5. 167). Thus the far field according to

(5. 190) is
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(.t)n- 1 ja(ka sin O) [E a2k2sin2 o +
EK(r.6•) 2sin 9 am j m(kcoso• +oa )

F2 
2 2

ELM aime
ri J(kcos9+a' ir1

aim nm

(5.195)

E.ro 1(-i)n-I kaJn(ka sin ) ekrElr e, 0.) n, H coo no e
• 2(kcosG+al am r

FCooni1m

Comparing (5. 195) with the exact expression in (5. 190) v e find

(0r 1 a 3 ka J' (J ) ikrEr,8")~ E K (r, 0m, 01-r nm n am E cos n e-
0 nmu rim 2 jnm am r

(5.196)
n+13 2 21W (-i) ~a ka' (j - (i I)J(

(,O , ) E (r,6'~ 01 m aim n mm0 0 m0 2J3m

ikr
X H cos no err]im r

where 6 and 6? are defined by
am am

kcos = -a
aim aim

(5. 197)
kcosO' = -a'

The power radiated Into a unit solid angle about the direction (9, 0) is

09, ) = . Ee02+ IE2) r 2 (5. 198)
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We call this quantity divided by the power of the incident E or H mode thenur

power pattern fE'1(o. 0) and fH (0, 0) respectively. Thus, using (5.185) and (5. 190)

we get

11(, )= 3i (k QE (kcosO) 2o 2 n
nm 7 ak \ sn OH 1(ka sine)

+ E(k cos 8) 2sin2n')
(kasin0) 2H (1)kasin0)

n
(5. 199)

C Ci 2 Hk00;0
fH(,0 o num (QHnkco ) 12 sn2n

nm' 1  r 3 aka 1(012 -n2 s%.ine H(1)(k sin +
nmnlm n

+ PH (k.coo) 2

+ (ka sin0)2 H (1)(kasin9) cos

n

From (5.196) we see that

fnm(0n , O) = 2n K(9n 0) = 0Ta W

(5.200)
.,2 .n 2

fH('m'0)= fHK(eý' ,0) = n~~J 1 1 -n 2
rn rnz 4a 12 Jnj am k

Jnm

where as before ' = 1, c=2. Thus for E modes the Kirchhoff

approximation gives the correct value of the radiated power in the direction (9, O0)

where 8 , r/2 <0 < ir, is given by (5.197). If another mode E a can propagate

undamped in the waveguide the power pattern vanishes in the direction (Ord, 0) which

also is correctly given by the Kirchhoff approximation. The same is true for H rnn

modes in the directions ( 1m, 0) and (0;, 0) respectively.
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The relation between fro(0, 0) and the power gain function, i.e. the radiated

power related to an isotropically radiating source, is

Gnm(91 ) = 4 = 4w .. n (5.201)
1 -rn

m
n

where r is the total power reflection coefficient given by (5.189). The fraction ofIn
the incident power which is radiated into the space outside the tube for H mode is

1-r -p-RoH I2 when ' a This quantity Is shown in Fig. 5-21 as a
I-rH 1l- 11 whn1 oll<k< J0'2"

function of ka/Jol compared with the result obtained from the Kirchhoff approxima-

tion.

The power pattern for modes HOl E and H11 are shown in Fig. 5-22, to-

gether with the results from the Kirchhoff approximation.

When ka >> 1 we ran use the function U(s, g) of (b. ;38) to obtain an approxi-

mate expression of the far field. For example, inserting (5.257) and (5.261) into

(5.190) yields, for H and E modes respectively

om om
E(r, 9) 4 Ho etk expIP(so_ qH)+ UlS'om~ ° 'n

I ' o a <0<8<X/2
(1) om 9H I)(ka sin 0)sin- coso

(5.202)

27r ak J (ka sin0) sin -
1 2/2 < 2 < v

sin 2M2

where s= 2iicos 0 Lma6 C qH = -4 + "

9o I
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FIG. 5-22: RADIATED POWER PER UNIT SOLID ANGLE FOR INCIDENT MODES
EACH CARRYING 1 WATT OF POWER (Wainsteln, 1948c, 1950a).(The solid curves for mode are renormalized by using the fact that the Kirchhoff

approximation gives the xact value at 0h1 (113.00). Consequently their absolute
magnitude is rather uncertain. )
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(kr iak exp U(s, q)+ U(s qja
E (r, ) 1vE L E 01

Jm r omj(koos+a om)

sm 2

2U H( 1)(kasin0) sin-2 0<0</2X 0 2li
So 0(5.203)

akJo(ka o 2<0<

a 2

where s JR; 006 0, s 2a aq -(k+w I

and the angle 0 and 9' are defined by (5.197). Wainstein (1948o) reports thatom om
for Hol and E modes and ka equal to that of Fig. 5-22 (higher than the out-off

frequency by 6 percent and 5 percent respectively), the difference between the exact

power patterns and the approximate ones obtained from (5. 202) and (5. 203) does not

exceed 2-3 percent. This indicates that for practical purposes the condition ka >> 1

is fulfilled as soon as the incident mode is above cut-off. For general H and E

modes, somewhat more complicated approximate expressions are obtainable in the

same manner. As jum > J~n > n, when n > 1, those formulas should also be useful

as soon as the incident mode is above cut-off. As pointed out in Section 5.6, the

approximate expressions of M n(a) and L a(a) obtained by using the function U(s, g)

have a small Jump at a = 0. Consequently the approximate radiation patterns display

a small jump at 0= -r/2, the amount of which is a measure of the accuracy of the

approximation.

When ka sin0 >> 1 is satisfied along with the condition ka >> 1, we can re-

place the Bessel and Hankel functions of (5.202) and (5.203) by their asymptotic

forms. For an E mode with 0 < 0 < xr/2, the result is

om
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0om 0
sin cos 2 exp iqkr-kasin9+)+U

Er(r, 0) LE 2 •akoF 4 om F(r, 9)
0 aom c om (5.204)

where

F~. ) a ex E(s, qE)]
F(ro0) = -rsn e

The botor before the function F(r, 0) is the field of an incident plane wave propa-

gating in the direction 0or scattered by a half-plane tangent to the tube. If we ex-

press the incident waveguide mode as a superposition of plane waves repeatedly re-

flected at the wall of the tube, the direction of propagation of these plane waves is al-

so given by 0 . Thus the first factor of (5.204) can be interpreted as the geomet-
om

rical optics contribution to the far field. The factor in "expands" the cyln-rsin9

drical ball-plane waves into spherical waves as the distance from the edge increases.

When 7 /2 < 0 < r, substitution of the asymptotic form for J in (5.203)0

yields the expressions of (5.204) plus an identical wave originating from the opposite

edge of the wall of the tube.

The function U(sq ) tends to zero as ka-- c for every fixed 0 j wr/2. At

0 = VI/2 it is discontinuous in such a manner that it compensates for the jump in the

geometrical optics approximation. This also means that the term U(som, qE) is

approximately zero for ka so large that the incident mode is not close to cut-off.

As in the scalar case the principle of reciprocity can be used to relate the

results of this section to those obtained in Section 5.4 for the scattering of a plane

electromagnetic wave. We assume that the plane wave is that of (5. 133) (i. e. , is

propagating in the direction (0i, 0)) and write the field inside the tube due to this

wave as
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H- mcosnd+BnSinno) n(J nm) Iea

H2- >~Z(An cn 0 Bsn) nma
M=m4 n nm

(5.205)

E z : 7". (CDmcosn÷DnmDsinno) Jn(nm•a e nmZ
n s.I .mfm r J'(jnm

To an H mode incident from z = ao given by (5.166) we relate the radiated far field
mu

E -- H (0)noeikr
90 am r

Eo evGH (O) coo noe k
nm r

In the same manner the far field pertinent to an E mode (5. 165) is taken as
uirn

E , F E (0) cos no e _._ -

0 n~m r

E IikrE• e G (0l) sin no e___

0 n~m r

We then have

o H =1)i2 4nJ2 4  G nm(, ) sin3

0k aonum HA H1(-1)- 2 4 2 ,2nm nn Mokxaa (nj'm-n)1

BniHnm = (-1)n+1 0. 4iJcnm FHm(ir_-i0coo

o k2an 0(J -n)

i2c 2
C E = 1_11n+l a24 F (-0)coo

DfllflLmOa 4a amrn
nm
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i4j 2 m

DnmE M (-2~ G Em(W-9 )sing
D E kD nm E

nm (5.206)

where o =1, C1 .2 . . 2. It is readily checked that equations (5.206) conform

to equations (5. 145), (5. 146) and (5. 190). From (5. 206) the absorption cross section,

defined as the ratio of the power transmitted into the tube to the power incident per

unit area, can be re~ated to the power patterns of the modes above cut-off. Thus,

for 1' < ka <Jo (ill 1.841, Jo1 =2.405) where only the H11 mode is above cut-

off, we have

a a(6 ' 2 (l) [f - 1, 0) sin2p+ f-,r-0 , r/2) c082 (5.207)

where X = 22r/k is the free-space wavelength. The absorption cross section for

ka = 2 can consequently be constructed from Fig. 5-22.

5.6 The Wiener-Hopf Factorization

5.6.1 Explicit Expressions

The fundamental step in the Wiener-Hopf technique is to find the split func-

tions L n(a) and M (a) analytic in the upper half-plane and such thatn n

L (a)L (-a) = i J (ai)H() (aK) (5.208 =5.33)n n n n

M (a)M (-a) = iciJn(aic)H (ai) ) (5.209 =5.34)
iin n n

where i and where L (a) and Mn (a) behave as O(I/ Vr) as I -acoD.
(See Wiener and Hopf, 1931; and Paley and Wiener, 1934.) These conditions deter-

mine the split functions completely except for a factor 1 1 but all physical quantities

are independent of the choice of this sign. As we have defined L (a) = L n(a),

M-n(a) a Ma(a) and M 0) ( L (a), it is only necessary to determine L n(a) for
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n;0 and M (a) for n o1 . In the following we will give formulas only for Ln (a) in

tho•be cases where the corresponding expression for Mn (a) is obtained by just re-

placing the Bessel functions by their derivwtives.

An explicit expression for thc Funuton log L n(a) is obtained by applying

(5. 8) to log 7ri j (aK)x1~ ý ,)(aK)I1 Thtis,n

L~~(a~~u~~exP D ) ja i 7 H(l) (f 7

(5.210)

where the path of integration passes below the pole y = a and where P designates

the Cauchy principal value as 1y 1-+ . Wainstein (1948c; 1949; 1950a, b) factorizes

the functions 7rKJ (ac)H(l)(ax) in which case the integral corresponding to (5.210)
n a

exists in the ordinary sense. The split function, analytic in the upper half-plane, is

then instead 4-ia(k+ a) Ln(a). Multiplying both numerator and denominator of the

integrand of (5.210) by y+ a and observing that the logarithm is an even function of

- we get

n 22Ln(a) =exp d 2 n

IA 7 -a (5.2111

where the path of integration Is indicated in Fig. 5-23a for the case when a is real

and lal < k. To determine the field quantities everywhere, it is sufficient to know

L n(a) and M n(a) for positive real values of a such that 0 <a < k and for all positive

Imaginary values. Ln(a) and Mn(a) are continuous and different from zero at those

points.

The integrand in (5.211) is an even function of y and we can therefore inte-

grate only over the interval (0, oo). Change of the variable of integration to v defined

by v = a. ... .for 0y<k and v=a4 -i: for k<-y yields
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Ln(a) - riJn(aT)H1(a)() X

r- n (v)r+ ar tan ,- i log (wIJ (v)H•')(vI2J

X exp -a P n dv +•r To (v2_a2 r. a2)4a k _-v2

OD v log [21 n(v)K n 0)+ 0 i 2 rv2 d, v• (5.212)

(01)
Mj ()= iJ(atc)H (aic) x

ka v -1 +arc J(va - i log ( IJn(v)Hn (v)d

30 a~ 1aX exp P pn( dv v

0'• (v÷¢ 2_ a,÷. 2 .. )"• -v

whr an OD (vv' lo -%v)n( dv]} (5.213)

where -w/2 <arctano <w/2 and In( Jn(iz), Kn(V)- = 1 H(l)(iz) are modi-

fied Bessel functions.

These expressions are valid if a is real and -k <a < k. However, L n(a )

and M 1(;') take the form 0 . for real an, and a' respectively, where as before

J(J =0 J'(j' )=0 0. 0-0<- 0=)' <j <.
nnmn nm no nl "no ýn

(we define J. I= 0 although they are not zeros of J and- J) and
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Ia

brabrnh out

(a)

-k ___ __ ___ __ __

an2 0 anl +k

branch oit

(b)

bina ouct&

%n2 '~ 'n

branch cut

(o)

FIG. 5-23: PATHS OF INTEGRATION FOR THE SPLIT FUNCTIONS
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2 ,nm= 2_ i

2~ kan 2 J
ak fa

are real and positive real or imaginary. Equations (5.202) and (5.213) are also valid

for an arbitrary positive imaginary value of a if the square root factor is substituted

by 1. In that case the use of principal value is no longer necesiary. LI(k) can also

be obtained from (5.212) by putting i = 0. Thus

rYI (v) / 1
ka ka I +arctan T l-og (7rj I(v)H'1(v)0)

Ll(k) = exp -- -- dv

li ogF,2(1)K(v)K (v])

+ 1 1 ~ ,- 1 d~vjj (5.214)

A different expression for L (a) and M (a) is obtained if the contour of inte-
n n

gration is deformed according to Fig. 5-23b. ThLs scheme has been employed by

Wainstein (1948c; 1949; 1950a, b) and what follows is a generalization of his work.

We write
I 1 m + aa n•

o a + C -P(a)( ())m 7Ua7_ 2 a (5.215)Ln(• n r n(S) (• -] a, -a
M=l nm

ml

,o(1) o +a -S(a)
Mn(a) = UnI (ax)Hn (ac) aT7 ý -- (5.216

m=l m

where m and m° are the smallest non-negative integers such that jt > Ka,
0o n(m 0 +l)

Jn(m +l) > ka and n(m•+l) >ea, Jn(m' +1) > ka. If m° =0 i.e. >ka or

Ja' ika, the product should be disregarded.
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If we combine the integrals along both sides of the branch cut in Fig. 5-23b,

4 observing that tho small indention around y = k gives no contribution if a • k, we get

i+ arc tang Y a P y2ý

_ 2 k (P) 2 22 J n -
Sx0 1

y-- .(5 27

+ arc tan (V
Yi 2 Y2(X)

2 n.

2an 22(P) da - + arc tan -

nr Y 2& n (x

Inm

log Jnm (5.217)

The functions m r

Y~x)YY'(x)

n(+ arc tan J-Wn + arc tan(5.1W
n 1n

are discontinuous and jump by 7r at the zeros of J () and J ) respectively. Wen a
introduce instead the continuous functions

0 -j+arg H(1)(x) =arc tan a + !+m7r (5.218)

ifJnm <xjn(m+l)
(x W -+arg H Wx arc tan n- + + mir (5.2191

n 2 n J'(x) 2
n

if j, <x<j
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Thus, we have

fGn(Jn11) = 17 0, n >0 n0

(0) = 7r '(J) = 0j, I;1, n~l
n a nt

Insertion of n (x) into (5.217) gives a divergent integral which is compensated by a

similarly divergent series. By subtracting the divergent part from both the integral

and the series, the result can be written as

Re P(a) = (2 v2 (v) - 2.n)(aK)
n r (a 2 2_v2)a 2 k2_ v (5.

OD

"n(a) +_ 2 +rogcx- i aJctan a +
aa lnT = (a "k

mP)-m=m +1 a,

(m+ 1) + -arccos(v_ a2se)y v -_ a k2 a r o

(5.221)

for a real, 0 <a <k. Here m is zero or an integer such that j nm <ka <Jn(mo+11 1 °10
and 0(m +1) = 1 + 1+...+ 01 - y, (,y= 0.577216... ) is the logarithmic

0 2 mo

derivative of the gamma function.

When a is positive imaginary, the expressions take the form

2 •vn(v) an(aic)

ReP(i) d- (5.222)
Re n~} =• (a2 2 -V 2 ) a24k2- v 1a
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ImP (in) = + log o k

- ~ log - +

+ (ac)-aK

2_2_2_ __T_ __ 2

for 0 <n<a). Here m 0iz zero or an integer such that jnmo< Ka < n(m+ )' where

as before sca = aVk +n

In the same manner, the expressions for Re S (a) and Im S (a) are obtained
from (5.220) and (5.223) by substitution of Qn(X) and jnm for Qn(x) and jnm respec-

tively*.

When a---b k the integral in (5.220) defining Re P (a) and Re S (a), n > 1,

diverges, but this is compensated by a contribution from the indentation around

y = k in Fig. 5.23b. Thus, we have

nm ka

L(k = oa om+k exp 0(vv) 1 dv-
o-k exp

Sk S0a W dv+ log (2log + i k- Im Po(kj (5. 224)

* Wainstein (1949) indicates that E2n(X) should be defined as 'n(x) = arg H (1),(x) -!

which seems to be incorrect. 11 n 2
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where b<l if ka;l and b=ka If ka<l,

(nk) = 1 +n exp 
n P I (5.225)

I= 1nm-k

1a +k -a n
Mk nm exp a 2' dvd vkaI mSn(k)+dJ

M1 nm
Mnll0~ ~ v a k '-kr ak-v

n 1 (5.226)

As before, m or m° is an integer or zero such that jn < ka < (e+) and

Jmn <ka <Jn(mi+1) respectively, and the product should be put equal to 1 if

m = 0 or m' =0.
0 0

5.6.2 Low Frequency Approximations

A low frequency expansion of L n(a) and M n(a) can be obtained from (5.220)

through (5.226) by using the power series expansions of Jn and Y or J' and Y'n n n
respectively. Since o (v) behaves as

- I

2(y+ logl)

when v -- 0, the expansion for L (a) contains a series of inverse powers of log (ka)0

and consequently it can be expected to give accurate results only when log ka >> 1.

The expression for L (a) is

Lo(a) ) Lo(1k A 1 log(l -g)+A-2 ,2r
0 0' 2

UA- T - ."2 (u) du]] (5.227)

where
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k-a
SA= -2log ak - 2,y+ ir ,y=" , = 0.577216...(Euler's constant)

12 lot(1-t dt (the Dilogarithm) (5.228)
•0

and

L k) O 1 " A _ A- 2(3A 5.229)

CM = 3-L = 1.2020569... (5.230)
n=l n

Equations (5.227) and (5.229) are given by Hallen (1961) in connection with his treat-

ment of cylindrical antennas. We also give only the results for L (a) and M (6)

which are the ones most easily obtained.

Re PIW Z .ak2- a2) log k+ a a fora real, a<k1 4a -- & 2
(5.231)

Re P (in) Z 2 arc tan-k k _a for 0 < r) < oD12yj n 2

a2(k2-a2)-4, k+a ka
1 4aa -+- fora real, 0<a<k

(5.232

ReSl472) 'a 2 arctan -k+ " for 0 <n <co

ILl(k)I exp - 1- L (5.233
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"{"p (y "-1 +log ka (5.234)

The expression for IL1(k)I is given by Levine and Schwinger (1948) and they report

that it gives values in excess of the correct value by less than 3 percent if ka < 1.

5.6.3 High Frequency Approximations

A high frequency expansion of Iw. P n(a) and Im S (a) is obtained by employing

instead the asymptotic series

on~ ~(2 W) i-124v + -1&u - 25) +(,U-1)C"2-i1*4 + 1073)
2(4v2( 2  6(4v)3  5(4v)

v --b- O

+ - 1)(53 - 15352 + 54703u - 375733) +... (5.235)
14(4v) 7

2'(v) v - + + 42 +46A-63 + 3+1851 2-2053•+1899"
n 2(4v) 6(4v)3  5(4v)5

(5.236)

2
where m = 4n . Hence
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im 1)n(a)k -• x + l +og -i o I r V ~ ma

42 m1 +(1-arc 2a-2k2 )
+Om+1)*+arcoosk- + -

o a k 2aa 8a2

+ (A- 1)(m -25) (arcoink I 1 +...+.
38aa(a) 3  (a 2 k)2  -• aa(Ka)

1-3

2 1

Lv! 2" +.~ (5.237)V=O (Ic) 1-2v-1 (ks)2(V+l) 1.3.. '(2v+1)1

-1

for a real, 0 <a< k, where A_, is the coefficient of v in (5.235).

O 2F nm- a k2 + n
Iml:)n(in9) e,, 2 +og -0 kr 1o ,,' - 1 + (m+ 1)-

m=mo+l 1J ak-

lo (a 4) - - +. (5.238)17 00 ia8rj 2K "

for ct in, -n > 0. The corresponding expressions nr Im Sn (a) are obtained by sub-

stitution of the coefficients of (5.235) against those of (5. 236).

To obtain an approximate expression for Re P (a) and Re S (a) valid for largen n

values of ka, we deform the contour of integration in (5.211) according to Fig. 5-23c.

Apart from the integrals along A.3 and A we get contributions from the pole at

-y = a and from the first quadrant of the large circle used to complete the contour.

The integral along A' is readily performed. It only contributes to the imaginary

parts of Pn(a) and Sn(a) and is essentially equal to the series term of (5.222) or
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(5.223). The real parts of P n(a) and Sn (a) are given by

K n(u)

Re P(a) = 1 -L_) Lr 5
0  a~ k u) udu (5.239)

-K'(u)o 2 7rit u)
nReS (a) = -1 _)- udu (5.240)

where a is real and 0 <a < k.

Consider the formula

M

where • is real and positive and the line of integration lies below the branch cuts.
The quantities 'v7~ , .. 72 are the complex zeros of K(u) in the third quadrant,

1 n MT - n_

r 1M n"

n
andwe put y=0. The number of zeros is M= n -[ -[(-1) 1 and they are dis-

tributed close to the curve indicated in Fig. 5-24. Equation (5.241) is a generaliza-

tion of a formula given by Jones (1955). By changing the sign of the variable of inte-

gration in the range (-oD, 0), and separating out the term containing the product over

M which can be easily integrated, we get
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Im u

-nal
T. Re u

a - t -1 = 0.66274,
0

where t is the positive root of oosht = t.0

FIG. 5-24: LOCATION OF THE ZEROS OF K (u) AND K' (u) IN THE
THIRD QUADRANT. n a

r•0o 2u eK (u)

0 u2 +2 (InnU) - 1(- 1) Knlu)

I -PM 2

m=1 g2+ 2

(5.242)

Taking the imaginary part of both sides, we have

u) K (u)

(-I) n+l OD u arc tan - du0 u2 + g2 Tr In(u)

2 (0) +-- 2 2 Y -log L 2 (5.243)

2 l , (m=0
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and In particular, by letting j3-4,oD,

0uaca Knl(u) 12

n I(uuarctan(% ) du = 7• -L--- Re (5.244)

By an identical procedure we obtain

a) K' (u)
u arc tan i-- du

u2+ p2 I RU)

[10 1 ~L (112 (()+Y 2 (0)] -. z~ lo I n3+;I
I ~ UJ m=0 (3

(5.245)

ODK'(u) f 4 2 3  MI
(1) ~u arectan 1,(Q)du = 16 3 m+ O Re [ mJJI (5.246)

where .' are the complex zeros of K' (u) in the third quadrant and -°= 0,
m n

2 4L 1

We have

arc tan I - O(e- 2u) as u --o Go (5.247

and the same is true for

-Kn(u)
arc tan n i--'''•t

arc 1I(u)n

We therefore obtain an asymptotic expression as ka--+ aD from (5.239) and (5. 240)
by replacing (a2k2+u2)-1/2 by

,____249 -
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I2
1 u

ak 2a3 k3

and thus
2

1+ 2~ M 2~
ReS(),-1- 2k2 log[ (ax)+Y 2 MT7 2

2ak ao 2+ ,j 2 i

3k6 Re Re 1nl)n-4 f( ) (5.248)

2a -.

ReS (a) = (Fia) (5. 250)n1"1

n ka -o 2a- n ( m=0a2inary

1a 3nt g r l sin (2-3 + a nd R e w hen -(- 1)• - 4 fc(a ) (5 .2 4 9 )

where k" = r__ 1 and

1 log- 0<pc<k (a real)

-- a- = (5.250)
1are ta 6if k < K (a imaginary)

The divergence of the integrals in (5.239) and (5.240) when a -*.Ok is~ compensated by

a contribution from the indentation around a = k of the path of integraticn, so that

o k+a Fm i1 ogja(5 2 1L(k) v omk 1 kT- exp 2- 4 7ogom=ikaom -;2 4 62.1j(521

ka--- co
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2

ILk) o1 k om exp j% log~ ~ nn ...k-a 2 4 2vm= om
M --- ' o

M1 -+R1

-og(2ka)+ 1 log m4a 2 k 2  16 mtf

na>,1 (5.252)

2
m k+a' (n- 1) 2

1 1 nm ka 1IMn (k) I n k- ct exp -2 -4log 21r +
k --,a)m --I nm

M' 2 2

+ -log(2ka)+ m > 1 I - =Re 4,
4 '-~m= 4a 2k2  \16 m= 0  L( mjj

n > 1 (5.253)

where, as before, m° or mo is an integer or zero such that j , ka <Jn(m+1) or

jn < ka <Jn(m +1 ) " Jones (1955) reports that (5.248) and (5.292) for ReP (al)

0 >A) and IL1(k•1 respectively yield values differing fromt he exact ones by less

than one percent when ka > 2.

Wainstein (1948c) has derived an asymptotic approximation to L (cv) and

L (a) in terms of a universal function U(s, g). Bowman (1963c) shows that both

L n(a) and Mn () can be represented asymptotically in terms of the same function for

all values of n. The function U(s, g) was introduced by Wainstein in connection with

the problem of diffraction by two parallel half-planes.

We start from the formula

i., N°log E a VF2- 72 Jn(a Fk27-/i 2)H(l)(a k2!ý,y:]•.

log ('-iaFk+a) L (a)- '-n-a

-OD)
(2.254)
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where the path of integration passes below the pole y = a. We change the variable of

integration in (5.254) by y = k sin r and obtain

C log •akcosrJ (akCos)H(1)(akc
log r-&kw+ a)n( = 2(a) Cosl" ksinr- (2

n 7r i ITT
C (5.255)

The path C goes from 7 - + ico to 7= - - io and below the point r = arc sin a.
2 2

If we introduce into (5.255) the asymptotic approximation

7rXJn(x)H(1)(x) e 212n(x) • 4 (5.256)
x--Bx

X -4 OD

where 2 n(x) is given by (5.235), we can deform the contour C into a path of steepest

discent C . From (5.256) and (5.235) it follows that C goes through a saddle pointo o

at T = 0 at an angle -v/4 with the real axis. Thus, we may replace the exact inte-

gral in (5.255) by the usual steepest descent approximation and we can write

"4 +lU(sqL)
L (a) 4 L-e (5.257)

ka -o

if a is real and ) <a < k or if a is positive imaginary, where

2

U(s, g) - - e 2 (5.258)

t-se1

0,nd where s =a q L = Q(ak). We have

U(O+, q) =- log(l + e21q) (5.259)
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By comparing the corresponding value of Ln(0) with the exact value

L (0)= wiJ (ak)Hl(ak) , (5.260)
nn n

and indication of the error in (5.257) can be obtained.

In an analogous manner we have

iT- + u(s0 qM
Me(l) kU e) (5.261)n •a(k+ a)

ka--o-,

if a is real and 0 <a< k or if a is positive imaginary where

s =Q qM = 0'n(ak) .

It should be noted that all approximate formulas for ka -- ),ao given here are

obtained from the ordinary asymptotic expansion for the Bessel functions, i.e. the

order is kept fixed as the argument tends to infinity. This means that we have to

require ka >> n, when n >, 1 in order to apply the formulas. Consequently, a high

frequency approximation for scattering of a plane wave at nonaxial incidence cannot

be obtained because in that case functions of order 2 or 3 ka are needed to obtain

sufficient accuracy.

We have given formulas for L (a) and M (a) valid if a is real and 0 4 a < k,n n

or if a is positive imaginary. As we have seen in the preceeding sections of this

chapter, the physical quantities of interest are given as inverse Fourier transforms

of functions involving L n(a) and Mn (a). When z > 0 we can deform the path of inte-

gration for the inverse Fourier transform (Fig. 5-1) into A2 of Fig. 5-23b, and

when z < 0, into a corresponding contour around a branch cut from -k to -ico. As

L n(a) and M n(a) are regular in the upper half-plane they take the same values on

both sides of the branch cut in Fig. 5-23b. When z < 0 and the branch cut goes from

-k 0 -ioo we get the values on the upper and right side of the branch cut a+ and on
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the left and lower side a - from

,riJ (ar.)H(1)(arc)
Ln(a +) L (5.262)

n

7ri n(a€) H(n2)l(a•)

n( Ln(a) (5.263)

where ax a F 1 as before, is the branch that is positive when a =0. The

correspomdl• formulas for Mn (a+) and Mn(a-) are obtained by replacing the Bessel

functions by their derivatives.

5.6.4 Numerical Computations

Numerical computations of L (al ), 1=0,1...6 have been performed by

Matsui (1960) for 0 4 imC 3 using (5.212) and (5.214). Jones (1955) reports numeri-
cal computtions of L l(al ) - =0,1,2, for 04 ka <10 by Brooker and Turing.

They use a formula obtained by deforming the path of integration into A-3 of Fig.

5-23 (cf. equation 5.239). The numerical values are shown in Table VIrr.

For ka < 0.5, using a formula similar to (5.226), Hallen (1956) has computed

the end admittance of a tube-shaped antenna, which admittance is equal to the com-

plex conjugate of the quantity

His results, converted into a graph of Lo(k), are shown in Fig. 5-25.

*Brooker, Turing and Matsui use the time factor e . Their split function is there.

fore the complex conjugate of L1 ().
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TABLE VIII
Real and Imaginary Parts of L (11)

.0 1.0000 1. 0000 . 0000 .0000

. 1 .9957 .0609

.2 .9831 .1198

. 25 .9747 .1501

.3 .9633 .1752

.4 .9375 .2259

.5 .9070 .9078 .2716 .2747

.6 .8730 .3117

.7 .8364 .3464

. 75 .8180 .3654

.8 .7983 .3757

.9 .7595 .4000

1.0 .7205 .7206 .4196 .4235
1.1 .6818 .4348
1.2 .6440 . .4460
1.25 .6252 .4541
1.3 .6073 .4536
1.4 .5719 .4580

1.5 .5382 .5375 .4595 .4634
1.6 .5060 .4586
1.7 .4757 .4554
1.75 .4601 .4568
1.8 .4471 .4504
1.9 .4204 .4437

2.0 .3955 .3942 .4356 .4391
2.1 .3724 .4264
2.2 .3510 .4161
2.25 .3394 .4139
2.3 .3313 .4050
2.4 .3133 .3932

2.5 .2969 .2952 .3808 .3839
2.6 .2820 .3680
2.7 .2686 .3549
2.75 .2606 .3510
2.8 .2566 .3414
2.9 .2459 .3276

Matfui (1960), Jones (1955) M - Matsui
J - Jones
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Table VII (cont'd)

Re{ýL(k)j ImL 1 (W)}

MaI .1 M J1

3.0 .2366 .2348 .3136 .3163
3.25 .2173 .2799
3.5 .2086 .2405
3.75 .2145 . 1888
4.0 .2867 .1903
4.25 .29O0 .2208
4.5 .2790 .2391
4.75 .2625 .2493

5.0 .2439 .2532
5.25 .2253 .2518
5.5 .2078 .2464
5.75 .1922 .2376
6.0 .1789 .2260
6.25 .1684 .2119
6.5 .1612 .1954
6.75 .1588 .1750

7.0 .1705 .1388
7.25 .2068 .1640
7.5 .2054 .1801
7.75 .1982 .1901
8.0 .1884 .1957
8.25 .1776 .1978
8.5 .1668 .1970
8.75 .1565 .1937

9.0 .1473 .1882
9.25 .1395 .1809
9.5 .1334 o1717
9.75 .1298 .1604

10.0 .1305 o1452

alO k &Wd all k -2 ! I1 is real and positive or positive imagieawy.
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Tb Vml ("0t'0

Re (la 1j. Im " c

SJ M . J,

.0 .4533 .4533 .0000 .0000

.1 .4537 .0000

.2 .4547 .0002
.25 .4556 .0003
.3 .4564 .0005
.4 .4588 .0011

.5 .4618 .4618 .0022 .0021
.6 .4653 .0036
.7 .4693 .0055
. 75 .4715 .0066
.8 .4737 .0080
.9 .4785 .0111

1.0 .4836 .4836 .0148 .0147
1.1 .4890 .mm93
1. 2 .4947 .0245
1.25 .4976 .0272
1.3 .5006 .0305
1.4 .5065 .0373

1.5 .5125 .5124 .0451 .0449
1.6 .5184 .0539
1.7 .5243 .0637
1.75 .5270 .0687
1.8 .5298 .0746
1.9 .5350 .0866

2.0 .5397 .5395 .0999 .0996
2.1 .5436 .1145
2.2 .5467 .1304
2.25 .5476 .1385
2.3. .5487 .1476
2.4 .5494 .1662

2.5 .5483 .5480 .1862 .1858
2.6 .5453 .2075
2.7 .5398 .2301
2.75 .5356 .2413
2.8 .5313 .2537
2.9 .5193 .2782
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Table VIII (cont t d)

Re
ka

_ _ _ _M J1 M J

3.0 .5031 .5028 .3031 .3026
3.25 .4378 .3624
3.5 .3206 .3982
3.75 .1101 .3080
4.0 .3440 .1148
4.25 .3761 .2052
4.5 .3553 .2531
4.75 .3223 .2768

5.0 .2880 .2851
5.25 .2562 .2831
5.5 .2286 .2742
5.75 .2055 .2606
6.0 .1870 .2437
6.25 .1733 .2244
6.5 .1644 .2026
6.75 .1616 .1770

7.0 .1749 .1328
7.25 .2202 .1614
7.5 .2194 .1809
7.75 .2111 ,1930
8.0 .1997 .1998
8.25 .1872 .2024
8.5 .1748 .2015
8.75 .1631 .1977

9.0 .1527 .1915
9.25 . 1439 .1832
9.5 .1372 .1730
9.75 .1332 ,1604

10.0 .1338 .1437

a l l = k where 1 - 3.83171...
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Table VM (cont'd)

Re fLI*I2)"• lm •L (al.

ka J i J

.0 .3526 .3594 .0000 .0000

.1 .3527 .0000

.2 .3532 .0001

.25 .3604 .0001

.3 .3539 .0002

.4 .3549 .0005

.5 .3562 .3631 .0009 .0009

.6 .3576 .0015

.7 .3593 .0023

.75 .3671 .0028
.8 .3611 .0033
.9 .3631 .0046

1.0 .3652 .3721 .0060 .0061
1.1 .3674 .0078
1.2 .3697 . .0098
1.25 .3778 .0110
1.3 .W720 .0121
1.4 .3744 .0146

1.5 .3768 .3837 .0175 .0177
1.6 .3791 .0207
1.7 .3815 .0242
1. 75 .3894 .0264
1.8 .3837 .0280
1.9 .3859 .0321

2.0 .3879 .3946 .0366 .0371
2.1 .3897 .0414
2.2 .3913 .0466
2.25 .3986 .0500
2.3 .3926 .0521
2.4 .3937 .0579

2:6 .3943 .4008 .0641 .0649
2.6 .3945 .0706
2.7 .3942 .0773
2.75 .4001 .0819
2.8 .3934 .0844
2.9 .3919 .0917
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Table VmI (cont'd)

Re ýLI(a2)) Im {L( 1 12)1

a M J M J

3.0 .3896 .3954 .0991 .1004
3.25 .3850 .1196
3.5 .3657 .1376
3.75 .3275 .1483
4.0 .3145 .0196
4.25 .3331 .0884
4.5 .3488 .0902
4.75 .3628 .0989

5.0 .3748 .1137
5.25 .3837 .1344
5.5 .3878 .1608
5.75 .3846 .1929
6.0 .3705 .2294
6.25 .3399 .2676
6.5 .2842 .2997
6.75 .1886 .3030

7.0 .0167 .1197
7.25 .2805 .1131
7.5 .2921 .1750
7.75 .2750 .2088
8.0 .2507 .2256
8.25 .2258 .2313
8.5 .2039 .2295
8.75 .1831 .2225

9.0 .1666 .2119
9.25 .1536 .1987
9.5 .1443 .1832
9.75 .1391 .1654

10.0 .1398 .1426

a 1 2  a2 where J12  7.01559...
a
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Table VIII (conttd)

ka h*h lý&)
M U U U

.0 .2988 .0000 .2640 .0000

.1 .2989 .0000 .2641 .0000

.2 .2992 .0000 .2643 .0000

.3 .2996 .0001 .2645 .0001

.4 .3002 .0003 .2649 .0002

.5 .3009 .0005 .2654 .0004

.6 .3018 .0009 .2660 .0006

.7 .3027 .0013 .2666 .0009

.8 .3038 .0019 .2674 .0013

.9 .3049 .0026 .2681 .0018

1.0 .3061 .0035 .2689 .0023
1.1 .3074 .0045 .2698 .0030
1.2 .3087 .0056 .2707 .0037
1.3 .3101 .0069 .2716 .0046
1.4 .3114 .0083 .2725 .0056

1.5 .3128 .0099 .2734 .0066
1.6 .3142 .0117 .2743 .0078
1.7 .3155 .0136 .2752 .0091
1.8 .3168 .0158 .2761 .0104
1.9 .3181 .0180 .2769 .0119

2.0 .3193 .0205 .2777 .0135
2.1 .3204 .0231 .2785 .0153
2.2 .3213 .0259 .2792 .0171
2.3 .3222 .0289 .2798 .0190
2.4 .3229 .0321 .2803 .0211

2.5 .3234 .0354 .2807 .0232
2.6 .3237 .0389 .2809 .0255
2.7 .3238 .0425 .2811 .0279
2.8 .3236 .0463 .2810 .0303
2.9 .3230 .0502 .2807 .0329

3.0 .3221.0543 .2803 .0355

2 J2
= k2 '123 where 1.74./2_ 124 where 1.26

3 kwij 1  10.17347... k IL - 13.236
13 32 13 " 14 e2 1 34 3

a a
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Table VIII (cont'd)

M M M M

.0 .2391 .0000 .2201 .0000
.1 .2391 .0000 .2202 .0000
.2 .2393 .0000 .2203 .0000
.3 .2395 .0001 .2204 .0000
.4 .2398 .0001 .2207 .0001

.5 .2401 .0003 .2209 .0002

.6 .2406 .0004 .2213 .0003

.7 .2410 .0007 .2216 .0005

.8 .2415 .0009 .2220 .0007

.9 .2421 .0013 .2225 .0010

1.0 .2427 .0017 .2229 .0013
1.1 .2433 .0022 .2234 .0017
1.2 .2440 .0027 .2239 .0021
1.3 .2446 .0033 .2244 .0026
1.4 .2453 .0040 .2249 .0031
1.5 .2460 .0048 .2254 .0037
1.6 .2466 .0057 .2259 .0043
1.7 .2473 .0066 .2265 ' .0050
1.8 .2479 .0076 .2270 .0058
1.9 .2486 .0086 .2274 .0066
2.0 .2491 .0098 .2279 .0075
2.1 .2497 .0110 .2283 .0085
2.2 .2502 .0124 .2287 .0095
2.3 .2506 .0137 .2291 .0105
2.4 .2510 .0152 .2294 .0116
2.5 .2513 .0168 .2296 .0128
2.6 .2516 .0184 .2298 .0141
2.7 .2517 .0201 .2299 .0154
2.8 .2517 .0219 .2299 .0167
2.9 .2515 .0237 .2298 .0181

3.0 .2512 .0256 .2296 .0196

2

1,5 =2 where J1 5, 16.47063... a !L6- whrae - 19.61586...
11 2 16a a
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VI
EXPERIMENTAL DATA

This chapter contains the experimental data tor scattering by circular cylin-

ders. Most of the material is relevant to scattering by infinite cylinders, but some

results for finite cylinders are included. Scattering of a plane acoustic wave by an

infinite cylinder is presented in view of the direct correspondence to scattering of an

electromagnetic wave. The details of the measuring techniques will not be discussed

here, but appropriate reference are given in each case.

The infinite cylinder is considered first, foiiu~ved by the finite cylinders. The

excitation is by a plane wave or point source. The notation used is given hi the fol-

lowing diagram:

.. . .T eiver

I I

I 0I

x

I I

6. 1 Scattering of Plane Waves by an Infinite Circular Cylinder

Using the parallel plate technique, Adey (1955) measured the amplitude and

phase of the diffracted electric field for perfectly conducting circular cylinders with

ka = 2, 3.4 and 5. 97. The incident radiation was a plane wave propagating perpen-

dicular to the cylinder axis with thie electric vector in the axial direction and wave-

length 3.28cm. Figures 6-1 through 6-3 are plots of the amplitudes and phases of

the back and forward scattered fields.
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Current distribution measurements on conducting cylinders for a plane wave I

incident perpendicular Wo the axis of the cylinder with the magnetic vector parallel

have been performed by Wetzel and Brick (1955). The image plane technique was

used, and the normalized amplitude and phase of the surface current, as functions of

the angle measured from the center of the Illuminated side, are presented in Figs.

6-4 and 6-5. The cylinder was perfectly conducting with ka = 12 (cf. Eq. 2.42).

Cook and Chrzanowski (1946) studied the absorption and scattering of a plane

sound wave by a simulated infinitely long circular cylinder whose axis was perpen-

dicular to the direction of incidence. Figure 6-6(a) shows the absorption cross sec-

tion for a Fiberglas cylinder of radius 2.88 in. over the frequency range 100-5000 HZ

Figures 6-6(b) and (c) correspond to the cylinders having one and two layers respec-

tively of cattle felt of thiclmess 7/8 in. wrapped around them. Theoretical curves

are given for comparison purposes.

Acoustic scattering by circular cylinders of infinite length immersed in a

Aiquid nutdium has been treated by Faran (1951). He measured the amplitudes of

waves scattered by metal cylinders in water. Figures 6-7(a) and (b) show the scat-

tering amplitude patterns for brass and steel cylinders respectively with ka = 1. 7.

The direction of the incident plane wave is indicated by the arrow in each diagram.

Figures 6-8(a), (b) and 6-9(a) give the scattering patterns for brass, copper and steel

cylinders, respectively with ka = 3.4 and Figs. 6-9(b), 6-10(a), (b) show the corre-

sponding quantities for ka = 5.0.

6.2 Scattering of a Point Source Field by an Infinite Circular Cylinder

Kodis (1930) used the image plane technique to measure the scattering of elec-

tromagnetic waves by conducting and dielectric cylinders. The electric field w?'

directed along the cylinder axis and the source was a horn antenna operating at

24 GHz (X = 1.25 cm). Figures 6-11 through 6-22 show the amplitude and phase of

the diffracted field for brass ,ylinders with ka = 3.1, 6.3 and 10 respectively. The

theoretical values for point source excitation are related to those for a line source

rallel to the axis.
265 --,-,



THE UNIVERSITY OF MICHIGAN
7133-3-T

Wiles and McLay (1954) employed a technique similar to that of Kodis (1950)

to measure the diffracted electromagnetic field amplitudes for brass cylinders of

infinite length. The incident cylindrical wave had a wavelength of 3.2 cm and electric

vector parallel to the cylinder axis. Figure 6-23 shows the relative intensity of the

axial component of total diffracted electric field for ka = 2.494, measured in the

range 5 < ky < 25.

Bauer, Tamarkin and Lindsay (1948) used ultrasonic waves at 1145 kHz

(X = 1.3 mm) to measure the scattering by steel cylinders in water. Relative pres-

sure distributions at different points at right angles to the direction of propagation,

for various distances of the obstacle and the receiver from the source are plotted in

Figs. 6-24 through 6-31. The models used were 1/4 and 1/2 in. steel rods and

5/8 in. polystyrene tubes.

6.3 Finite Cylinders

Measurements of scattered pressure for finite cylinders using acoustic waves

have been made by Wiener (1947). The wooden cylinders had length and diameter

equal, and the results were compared with theoretical values for an infinite cylinder.

The scattering of electromagnetic waves (X = 3.13 cm) by brass cylinders of

length-tG-width ratios 4.44, 8.89 and 13.32 has been determined by Giese and Sie-

denthopf(1962). The measurements were confined to the far fields as a function of

the scattering angle (angle between the radius vector to the point of observation and

the cylinder axis).

Meyer, Kuttruff and Severin (1959) used the Doppler method to measure the

electromagnetic back scattering cross sections of finite cylinders at a wavelength

of X = 3.2 cm. Figures 6-32 through 6-39 give plots of the differential cross section

as P function of the scattering angle 0. The maximum back scattering cross section

(in the plane 0 = 900) is presented as a function of I/X in Fig. 6-40, and the corre-

sponding quantity for 0 00 or 1800 is plotted in Fig. 6-41.
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6.4 Thin Cylinders

Figure 6-42 shows a set of measurements reported by Van Vleck, Bloch and

Hammermesh (1947) for a thin cylinder (I = 900 a) at broadside incidence. The nor-

malized back scattering cross section is compared with theoretical values calculated

by Lindroth (1955).

Figure 6-43 shows the results of measurements made by Liepa and Chang

(1965) on the back scattering crcoss section of a silver-plated stainless steel cylinder

1/16 in. in diameter. The frequency of the incident electromagnetic wave was main-

tained at 2. 370 GHz (corresponding to ka = 0.0394), and the length of the cylinder

was varied from 30 in. to 1.5 in. (Note that this curve is not directly comparable to

Fig. 6-42 because 1/a is kept constant in the latter, whereas ka is constant in the

former.)

A similar set of data for a silver plated stainless steel cylinder with

ka = .0222 is given by King and Wu (1959) in Fig. 6-44. The values are compared

with data for a cylinder with ka = . 0202 (Liepa, 1964) and are in good agreement.
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FIG. 6-2: MEASURED (•.)AND THEORETICAL (--) AMPLITrUDE OF TOTAL
ELECTRIC FIELD IN THE BACKWARD DIRECTION (0 = 70 FOR A

METALLIC CYLINDER WITH Ei PARALLEL TO THE AXIS (Adey,

1955).
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FIG. 6-3: MI.LASURED (•.)AND THEORETICAL 4---) RELATIVE PHASE OF
TOTAL ELECTRIC FIELD IN THE BACKWARD DIRECTION (0 = 70)
FOR A METALLIC CYLINDER WITH Ei PARALLEL TO THE AX.IS
(Adey, 1955).
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0 5 0 Is 20 25

BRASS CYLINDER

2 a

2 ONE*

L Ix ?-76? Cm.

ka ky

FIG. 6-23: MEASURED (o.00, x 9 ~) AND THEORETICAL ()RELATIVE INTENSITY
OF THE TOTAL DIFFRACTED FIELD E FOR A BRASS CYLINDER;
ka = 2.494 (L - left of the cylinder, R - riIght of the cylinder) (Wiles
and McLay, 1954).
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FIG. 6-24: RELATIVE SCATTERED PRESSURE AMPLITUDE FOR A

1/4 IN. STEEL RODIRITH ka = 14.4, x = 12.7cm AND

x = 66 cm (Bauer et al, 1948). o
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FIG. 6-26: RELATIVE SCATTERED PRESSURE AMPLITUDE FOR A 1/4 IN. STEEL
ROD WITH ka = 14.4, x = 12.7cm AND x = 46.6cm (Bauer et al, 1948).
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FIG. 6-28: RELATIVE SCATTERED PRESSURE AMPLITUDE FOR A 1/4 IN. STEEL
ROD WITH ka-14.4, x 0 54.3 cm AND x= 10cm (Bauer et al, 1948).0
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FIG. 6-29: RELATIVE SCATTERED PRESSURE AMPLITUDE FOR A 1/2 IN. STEEL
ROD WITH ka = 28.8, x = 54.3cm AND x = 10cm (Bauer et al, 1948).
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FIG. 6-30: RELATIVE SCATTERED PRESSURE AMPLITUDE FOR A 1/4 IN. STEEL
ROD WITH ka = 14.4, x = b4.3cm AND x = 40cm (Bauer et al, 1948).
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FIG, 6-31: RELATIVE SCATTERED PRESSURE AMPLITUDE FOR A 1/2 IN. STEEL

ROD WITH ka = 28.8, x. = 54.3 cm AND x = 40cm (Bauer et al, 1948).
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2G40

FIG. 6-32: BACK SCATTERING CROSS SECTION (IN db/cm 2) FOR INCIDENCE AT
ANGLE 0 TO CYLINDER AXIS. UPPER HALF: a,, (Ei PARALLEL TO

AXIS); LOWER HALF: a. (Ei PERPENDICULAR TO AXIS); I = 6cm,
X = 3.2 cm, ka = 0.588 (Meyer et al, 1959).
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2040

FIG. 6-33: BACK SCATTERING CROSS SECTION (IN db/cm2) FOR INCIDENCE AT
ANGLE 0 TO CYLINDER AXIS. UPPER HALF: a,, (E' PARALLEL TO
AXIS); LOWER HALF: a, &E! PERPENDICULAR TO AXIS); I = 9cm,
X = 3.2 cm, ka= .882 (Meyer et al, 1959).
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FIG. 6-34: BACK SCATTERING CROSS SECTION (IN db/cm 2) FOR INCIDENCE AT
ANGLE 0 TO CYLINDER AXIS. UPPER HALF: a,, (Ei PARALLEL TO
AXIS); LOWER HALF: oa. (Ei PERPENDICULAR TO AXIS; I 14cm,

= 3.2 cm, ka = 1.375 (Meyer et al, 1959).
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FIG. 6-35: BACK SCATTERING CROSS SECTION (IN db/cm 2) FOR INCIDENCE AT
ANGLE 6 TO CYLINDER AXNS. UPPER HALF: %, (Ei PARALLEL TO
AXIS); LOWER HALF: < (E PERPENDICULAR TO AXIS); I = 18 cm,
A = 3.2 cm AND ka = 1. 766 (Meyer et al, 1959).
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20

FIG. 6-36: BACK SCATTERING CROSS SECTION (IN db/cm ) FOR1INCIDENCE AT
ANGLE 0 TO CYLINDER AIS. UPPER HALF: cr, (E PARALLEL TO
AXIS; LOWER HALF: a. (E PERPENDICULAR TO AXIS); I = 22 cm,
,f3.2cm, ka = 2.16 (Meyer et al, 1959).
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26

FIG. 6-37: BACK SCATTERING CROSS SECTION (IN db/cm2 ) FOR INCIDENCE AT
ANGLE 9 TO CYLINDER AXIS. UPPER HAkLF: cr,, (E' PARALLEL TO
AXIS; LOWER HALF: aL (Ei PERPENDICULAR TO AXIS); I = 28cm,
X - 3.2 cm, ka = 2.74 (Meyer et al, 1959).
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FIG. 6-38: BACK SCATTERING CROSS SECTION (IN db/om 2 FOR INCIDENCE AT
ANGLE 8 TO CYLINDER AXIS. UPPER HALF: oil (Ei PARALLEL TO
AXIS); LOWER HALF: cr% (Ei PERPENDICULAR TO AXIS); I = 32 cm,
X - 3.2 cm, ka = 3.14 (Meyer et al, 1959).
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FIG. 6-39: BACK SCATTERING CROSS SECTION (IN db/om 2) FOIj INCIDENCE AT
ANGLE 6 TO CYLINDER AXIS. UPPER HALF: all (E PARALLEL TO
AXIS); LOWER IHALF: OL (,E PERPENDICULAR TO AXIS); 1= 40 cm,
X = 3.2 cm, ka = 3.92 (Meyer et al. 1959).
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FIG. 6-40: MAXIMUM BACK SCATTERING CROSS SECTION (0 900) OF A CYLINDER
AS A FUNCTION OF LENGTH. MEASURED (o @a) AND THEORETICAL
(-) all; MEASURED (x x *) AND THEORETICAL ( a---) ciL (Meyer et al,
1959).
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FIG. 6-41: MEASURED (9 * s) AND PHYSICAL OPTICS --- -) BACK SCATTERING
CROSS SECTION IN THE AXIAL DIRECTION (8- 00 or 1800) (Meyer
et al, 1959).
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FIG. 6-42: BACK SCATTERING CROSS SECTION OF THIN WIRE AT BROADSIDE
INCIDENCE FOR t/a = 900; EXPERIMENTAL (, a) (Van Vleck et al,
1947); THEORETICAL (-) (Lindroth, 1955).
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FIG. 6-43: MEASURED BACK SCATTERING CROSS SECTION OF STAINLESS
STEEL CYLINDER AT BROADSIDE INC iJENCE; ka = 0.0395
(Liepa and Chang, 1965).
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FIG. 6-44: MEASURED BACK SCATTERING CROSS SECTION OF SILVER
PLATED STEEL CYLINDER AT BROADSIDE INCIDENCE;

o * OFOR ka = 0.022 (King and Wu, 1959); Kx xFOR ka = 0.0202
(Liepa, 1964).
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